Tyto ukázkové dotazy předpokládají pracovní znalost jazyka SQL a nástroje BigQuery. Další informace o SQL v nástroji BigQuery
Dotazy pro přenos dat služby Campaign Manager 360
Párování proměnných Floodlight s dočasnými tabulkami
Spárujte hodnotu user_id s vlastními proměnnými Floodlight v tabulce aktivit. Tímto způsobem pak lze spojit data první strany s daty ze služby Campaign Manager 360.
/* Creating the match temp table. This can be a separate query and the
temporary table will persist for 72 hours. */
CREATE TABLE
temp_table AS (
SELECT
user_id,
REGEXP_EXTRACT(event.other_data, 'u1=([^;]*)') AS u1_val
FROM
adh.cm_dt_activities_attributed
GROUP BY
1,
2 )
/* Matching to Campaign Manager 360 impression data */
SELECT
imp.event.campaign_id,
temp.u1_val,
COUNT(*) AS cnt
FROM
adh.cm_dt_impressions AS imp
JOIN
tmp.temp_table AS temp USING (user_id)
GROUP BY
1,
2
Realizovaná zobrazení
Tento příklad se hodí pro správu zobrazení a ukazuje, jak zjistit, kolik zobrazení nastalo nad limit frekvence nebo zda se některým potenciálním zákazníkům nezobrazila vůbec žádná reklama. Na základě těchto informací můžete optimalizovat své weby a taktiku tak, abyste zvolenému publiku předkládali správný počet zobrazení reklam.
/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345] */
WITH filtered_uniques AS (
SELECT
user_id,
COUNT(event.placement_id) AS frequency
FROM adh.cm_dt_impressions
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.country_domain_name = 'US'
GROUP BY user_id
)
SELECT
frequency,
COUNT(*) AS uniques
FROM filtered_uniques
GROUP BY frequency
ORDER BY frequency
;
Celkový počet unikátních souborů cookie nebo celková frekvence
Tento příklad pomáhá zjistit, které taktiky a formáty reklam vedly ke zvětšení nebo zmenšení frekvence nebo počtu unikátních souborů cookie.
/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */
SELECT
COUNT(DISTINCT user_id) AS total_users,
COUNT(DISTINCT event.site_id) AS total_sites,
COUNT(DISTINCT device_id_md5) AS total_devices,
COUNT(event.placement_id) AS impressions
FROM adh.cm_dt_impressions
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.placement_id IN UNNEST(@placement_ids)
AND event.country_domain_name = 'US'
;
Dotaz lze dále zúžit, jestliže do příkazu WHERE zahrnete ID webu nebo umístění.
Celkový počet unikátních souborů cookie a průměrná frekvence podle státu
Tento příklad spojuje tabulku cm_dt_impressions
s tabulku metadat cm_dt_state
. Zjistíte tak celkový počet zobrazení, počet souborů cookie v jednotlivých státech a průměrný počet zobrazení na uživatele. Údaje jsou geograficky seskupeny podle severoamerických států a provincií.
WITH impression_stats AS (
SELECT
event.country_domain_name AS country,
CONCAT(event.country_domain_name, '-', event.state) AS state,
COUNT(DISTINCT user_id) AS users,
COUNT(*) AS impressions
FROM adh.cm_dt_impressions
WHERE event.country_domain_name = 'US'
OR event.country_domain_name = 'CA'
GROUP BY 1, 2
)
SELECT
country,
IFNULL(state_name, state) AS state_name,
users,
impressions,
FORMAT(
'%0.2f',
IF(
IFNULL(impressions, 0) = 0,
0,
impressions / users
)
) AS avg_imps_per_user
FROM impression_stats
LEFT JOIN adh.cm_dt_state USING (state)
;
Publika ve službě Display & Video 360
Tento příklad ukazuje, jak analyzovat publika ze služby Display & Video 360. Dozvíte se, jaká publika zobrazováním svých reklam zasahujete, a zjistíte, zda některá publika mají lepší výsledky než jiná. Tyto informace vám mohou pomoci podle vašich cílů vyvážit počet unikátních souborů cookie (tedy zobrazení reklam co nejvíce uživatelům) a kvalitu (tedy zúžení cílení a získávání viditelných zobrazení).
/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */
WITH filtered_impressions AS (
SELECT
event.event_time as date,
CASE
WHEN (event.browser_enum IN ('29', '30', '31')
OR event.os_id IN
(501012, 501013, 501017, 501018,
501019, 501020, 501021, 501022,
501023, 501024, 501025, 501027))
THEN 'Mobile'
ELSE 'Desktop'
END AS device,
event.dv360_matching_targeted_segments,
event.active_view_viewable_impressions,
event.active_view_measurable_impressions,
user_id
FROM adh.cm_dt_impressions
WHERE event.dv360_matching_targeted_segments != ''
AND event.advertiser_id in UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.dv360_country_code = 'US'
)
SELECT
audience_id,
device,
COUNT(*) AS impressions,
COUNT(DISTINCT user_id) AS uniques,
ROUND(COUNT(*) / COUNT(DISTINCT user_id), 1) AS frequency,
SUM(active_view_viewable_impressions) AS viewable_impressions,
SUM(active_view_measurable_impressions) AS measurable_impressions
FROM filtered_impressions
JOIN UNNEST(SPLIT(dv360_matching_targeted_segments, ' ')) AS audience_id
GROUP BY 1, 2
;
Viditelnost
Tyto příklady ukazují, jak měřit metriky viditelnosti Active View Plus.
WITH T AS (
SELECT cm_dt_impressions.event.impression_id AS Impression,
cm_dt_impressions.event.active_view_measurable_impressions AS AV_Measurable,
SUM(cm_dt_active_view_plus.event.active_view_plus_measurable_count) AS AVP_Measurable
FROM adh.cm_dt_impressions
FULL JOIN adh.cm_dt_active_view_plus
ON (cm_dt_impressions.event.impression_id =
cm_dt_active_view_plus.event.impression_id)
GROUP BY Impression, AV_Measurable
)
SELECT COUNT(Impression), SUM(AV_Measurable), SUM(AVP_Measurable)
FROM T
;
WITH Raw AS (
SELECT
event.ad_id AS Ad_Id,
SUM(event.active_view_plus_measurable_count) AS avp_total,
SUM(event.active_view_first_quartile_viewable_impressions) AS avp_1st_quartile,
SUM(event.active_view_midpoint_viewable_impressions) AS avp_2nd_quartile,
SUM(event.active_view_third_quartile_viewable_impressions) AS avp_3rd_quartile,
SUM(event.active_view_complete_viewable_impressions) AS avp_complete
FROM
adh.cm_dt_active_view_plus
GROUP BY
1
)
SELECT
Ad_Id,
avp_1st_quartile / avp_total AS Viewable_Rate_1st_Quartile,
avp_2nd_quartile / avp_total AS Viewable_Rate_2nd_Quartile,
avp_3rd_quartile / avp_total AS Viewable_Rate_3rd_Quartile,
avp_complete / avp_total AS Viewable_Rate_Completion_Quartile
FROM
Raw
WHERE
avp_total > 0
ORDER BY
Viewable_Rate_1st_Quartile DESC
;
Dynamická data v Přenosu dat služby Campaign Manager 360
Počet zobrazení na dynamický profil a zdroj
SELECT
event.dynamic_profile,
feed_name,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
JOIN UNNEST (event.feed) as feed_name
GROUP BY 1, 2;
Počet zobrazení na dynamický štítek pro přehledy ve zdroji 1
SELECT
event.feed_reporting_label[SAFE_ORDINAL(1)] feed1_reporting_label,,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(1)] <> “” # where you have at least one reporting label set
GROUP BY 1;
Počet zobrazení, jejichž štítek pro přehledy = „červená“ ve zdroji 2
SELECT
event.feed_reporting_label[SAFE_ORDINAL(2)] AS feed1_reporting_label,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(2)] = “red”
GROUP BY 1;
Počet zobrazení, která v přehledech obsahují hodnotu dimension_1 = „červená“ a dimension_2 = „automobil“ ve zdroji 1
SELECT
event.feed_reporting_label[SAFE_ORDINAL(1)] AS feed1_reporting_label,
event.feed_reporting_dimension1[SAFE_ORDINAL(1)] AS feed1_reporting_dimension1,
event.feed_reporting_dimension2[SAFE_ORDINAL(1)] AS feed2_reporting_dimension1,
event.feed_reporting_dimension3[SAFE_ORDINAL(1)] AS feed3_reporting_dimension1,
event.feed_reporting_dimension4[SAFE_ORDINAL(1)] AS feed4_reporting_dimension1,
event.feed_reporting_dimension5[SAFE_ORDINAL(1)] AS feed5_reporting_dimension1,
event.feed_reporting_dimension6[SAFE_ORDINAL(1)] AS feed6_reporting_dimension1,
COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_dimension1[SAFE_ORDINAL(1)] = “red”
AND event.feed_reporting_dimension2[SAFE_ORDINAL(1)] = “car”
GROUP BY 1,2,3,4,5,6,7;
Formáty reklam v Přenosu dat služby Campaign Manager 360
Tyto příklady ukazují, jak zjistit, které formáty reklam dosahují maximálního počtu unikátních souborů cookie nebo největší frekvence zobrazení. Tyto informace vám mohou pomoci vyvážit celkový počet unikátních souborů cookie a vystavení uživatelů reklamám.
Realizovaná zobrazení
/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset.*/
WITH filtered_uniques AS (
SELECT
user_id,
CASE
WHEN creative_type LIKE '%Video%' THEN 'Video'
WHEN creative_type IS NULL THEN 'Unknown'
ELSE 'Display'
END AS creative_format,
COUNT(*) AS impressions
FROM adh.cm_dt_impressions impression
LEFT JOIN YOUR_BQ_DATASET.campaigns creative
ON creative.rendering_id = impression.event.rendering_id
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.country_domain_name = 'US'
GROUP BY user_id, creative_format
)
SELECT
impressions AS frequency,
creative_format,
COUNT(DISTINCT user_id) AS uniques,
SUM(impressions) AS impressions
FROM filtered_uniques
GROUP BY frequency, creative_format
ORDER BY frequency
;
Počet a frekvence unikátních souborů cookie
/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset. */
WITH filtered_impressions AS (
SELECT
event.campaign_id AS campaign_id,
event.rendering_id AS rendering_id,
user_id
FROM adh.cm_dt_impressions
WHERE user_id != '0'
AND event.advertiser_id IN UNNEST(@advertiser_ids)
AND event.campaign_id IN UNNEST(@campaign_ids)
AND event.country_domain_name = 'US'
)
SELECT
Campaign,
CASE
WHEN creative_type LIKE '%Video%' THEN 'Video'
WHEN creative_type IS NULL THEN 'Unknown'
ELSE 'Display'
END AS creative_format,
COUNT(DISTINCT user_id) AS users,
COUNT(*) AS impressions
FROM filtered_impressions
LEFT JOIN YOUR_BQ_DATASET.campaigns USING (campaign_id)
LEFT JOIN YOUR_BQ_DATASET.creatives USING (rendering_id)
GROUP BY 1, 2
;
Google Ads
Zobrazení v mobilních aplikacích s tabulkami _rdid
Dotaz 1:
SELECT
campaign_id,
COUNT(*) AS imp,
COUNT(DISTINCT user_id) AS users
FROM adh.google_ads_impressions
WHERE is_app_traffic
GROUP BY 1
;
Dotaz 2:
SELECT
campaign_id,
COUNT(DISTINCT device_id_md5) AS device_ids
FROM adh.google_ads_impressions_rdid
GROUP BY 1
;
Tyto výsledky lze spojit podle hodnoty campaign_id.
Zobrazování podle demografických skupin
Tento příklad ukazuje, jak zjistit, které kampaně oslovují určitou demografickou skupinu.
/* For this query to run, @customer_id
must be replaced with an actual ID. For example [12345] */
WITH impression_stats AS (
SELECT
campaign_id,
demographics.gender AS gender_id,
demographics.age_group AS age_group_id,
COUNT(DISTINCT user_id) AS users,
COUNT(*) AS impressions
FROM adh.google_ads_impressions
WHERE customer_id = @customer_id
GROUP BY 1, 2, 3
)
SELECT
campaign_name,
gender_name,
age_group_name,
users,
impressions
FROM impression_stats
LEFT JOIN adh.google_ads_campaign USING (campaign_id)
LEFT JOIN adh.gender USING (gender_id)
LEFT JOIN adh.age_group USING (age_group_id)
ORDER BY 1, 2, 3
;
Viditelnost
Přehled viditelnosti s příklady dotazů najdete v článku o pokročilých metrikách Active View.
Nastavení časového pásma inzerenta v Google Ads
SELECT
customer_id,
customer_timezone,
count(1) as impressions
FROM adh.google_ads_impressions i
INNER JOIN adh.google_ads_customer c
ON c.customer_id = i.customer_id
WHERE TIMESTAMP_MICROS(i.query_id.time_usec) >= CAST(DATETIME(@date, c.customer_timezone) AS TIMESTAMP)
AND TIMESTAMP_MICROS(i.query_id.time_usec) < CAST(DATETIME_ADD(DATETIME(@date, c.customer_timezone), INTERVAL 1 DAY) AS TIMESTAMP)
GROUP BY customer_id, customer_timezone
Typ inventáře
Tento ukázkový dotaz předvádí koncept typu inventáře. Můžete použít pole inventory_type
k tomu, abyste určili, na kterých reklamních plochách se vaše reklamy zobrazovaly, například Gmail nebo YouTube Music. Možné hodnoty: YOUTUBE
, YOUTUBE_TV
,
YOUTUBE_MUSIC
, SEARCH
, GMAIL
, OTHER
. Další odkazují na Obsahovou síť Google nebo síť Google Video.
SELECT
i.campaign_id,
cmp.campaign_name,
i.inventory_type,
COUNT(i.query_id.time_usec) AS impressions
FROM adh.google_ads_impressions i
LEFT JOIN adh.google_ads_campaign cmp ON (i.campaign_id = cmp.campaign_id)
WHERE
TIMESTAMP_MICROS(i.query_id.time_usec)
BETWEEN @local_start_date
AND TIMESTAMP_ADD(@local_start_date,INTERVAL @number_days*24 HOUR)
GROUP BY 1, 2, 3
ORDER BY 4 DESC
Práce s atribučními modely
Ads Data Hub podporuje v tabulkách konverzí v Google Ads modely atribuce založené na datech (DDA) i atribuce poslednímu kliknutí (LCA). Do 19. září 2023 byl podporován jen model LCA. Následující příklady ukazují, jak najít konverze, které jeden z těchto modelů používají, a jak používat tabulku metadat nastavení konverzí.
Nalezení konverzí s atribucí založenou na datech
Tento příklad ukazuje, jak najít konverze používající model DDA:
SELECT
s.name
SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.action_optimization = 'Primary'
AND s.attribution_model = 'DATA_DRIVEN'
GROUP BY 1;
Nalezení konverzí s atribucí poslednímu kliknutí
Pokud chcete zachovat předchozí chování, přidejte do svých dotazů podmínku WHERE
, která z výsledků vyfiltruje konverze s atribucí poslednímu kliknutí:
SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 123
AND conversion_attribution_model_type = 'LAST_CLICK';
Filtrování podle názvu konverze pomocí tabulky metadat
Tabulka metadat nastavení konverzí umožňuje místo podle čísel filtrovat podle smysluplných názvů.
Například místo filtrování konverzí podle pole conversion_type
:
SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 291496508;
Můžete použít klauzuli JOIN
, která bude filtrovat pomocí polí v tabulce metadat nastavení konverzí:
SELECT SUM(num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.name = 'LTH Android Order';
SELECT s.name, SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.conversion_category = 'PURCHASE'
AND s.action_optimization = 'Primary'
GROUP BY 1;
Dotazy na reklamní pody na YouTube
Reklamní pody seskupují dvě reklamy do jedné reklamní přestávky během delších relací sledování YouTube. (Představte si to jako reklamní přestávku v televizi, ale s pouze dvěma reklamami.) Reklamy zobrazené v reklamních podech zůstávají přeskočitelné. Pokud ale uživatel přeskočí první reklamu, je přeskočena i reklama druhá.
Zobrazení a zhlédnutí z kampaní TrueView in-stream v Google Ads
SELECT
cmp.campaign_name,
imp.is_app_traffic,
COUNT(*) AS total_impressions,
COUNTIF(clk.click_id IS NOT NULL) AS total_trueview_views
FROM adh.google_ads_impressions imp
JOIN adh.google_ads_campaign cmp USING (campaign_id)
JOIN adh.google_ads_adgroup adg USING (adgroup_id)
LEFT JOIN adh.google_ads_clicks clk ON
imp.impression_id = clk.impression_id
WHERE
imp.customer_id IN UNNEST(@customer_ids)
AND adg.adgroup_type = 'VIDEO_TRUE_VIEW_IN_STREAM'
AND cmp.advertising_channel_type = 'VIDEO'
GROUP BY 1, 2
Metriky viditelnosti pro řádkové položky ve službě Display & Video 360
WITH
imp_stats AS (
SELECT
imp.line_item_id,
count(*) as total_imp,
SUM(num_active_view_measurable_impression) AS num_measurable_impressions,
SUM(num_active_view_eligible_impression) AS num_enabled_impressions
FROM adh.dv360_youtube_impressions imp
WHERE
imp.line_item_id IN UNNEST(@line_item_ids)
GROUP BY 1
),
av_stats AS (
SELECT
imp.line_item_id,
SUM(num_active_view_viewable_impression) AS num_viewable_impressions
FROM adh.dv360_youtube_impressions imp
LEFT JOIN
adh.dv360_youtube_active_views av
ON imp.impression_id = av.impression_id
WHERE
imp.line_item_id IN UNNEST(@line_item_ids)
GROUP BY 1
)
SELECT
li.line_item_name,
SUM(imp.total_imp) as num_impressions,
SUM(imp.num_measurable_impressions) AS num_measurable_impressions,
SUM(imp.num_enabled_impressions) AS num_enabled_impressions,
SUM(IFNULL(av.num_viewable_impressions, 0)) AS num_viewable_impressions
FROM imp_stats as imp
LEFT JOIN av_stats AS av USING (line_item_id)
JOIN adh.dv360_youtube_lineitem li ON (imp.line_item_id = li.line_item_id)
GROUP BY 1
Dotazy na YouTube Reserve
Realizovaná zobrazení podle inzerenta
Tento dotaz zjistí počet zobrazení a jedinečných uživatelů na každého inzerenta. Z výsledku pak můžete vypočítat průměrný počet zobrazení na uživatele (neboli frekvenci reklam).
SELECT
advertiser_name,
COUNT(*) AS imp,
COUNT(DISTINCT user_id) AS users
FROM adh.yt_reserve_impressions AS impressions
JOIN adh.yt_reserve_order order ON impressions.order_id = order.order_id
GROUP BY 1
;
Přeskočení reklam
Tento dotaz zjistí počet přeskočení reklam na zákazníka, kampaň, reklamní sestavu a kreativu.
SELECT
impression_data.customer_id,
impression_data.campaign_id,
impression_data.adgroup_id,
impression_data.ad_group_creative_id,
COUNTIF(label = "videoskipped") AS num_skips
FROM
adh.google_ads_conversions
GROUP BY 1, 2, 3, 4;
Obecné dotazy
Odečtení jedné skupiny uživatelů od jiné
Tento příklad ukazuje, jak odečíst jednu skupinu uživatelů od jiné. Tuto metodu lze využít mnoha způsoby, například ke zjištění počtu uživatelů bez konverze, uživatelů bez viditelných zobrazení a uživatelů bez kliknutí.
WITH exclude AS (
SELECT DISTINCT user_id
FROM adh.google_ads_impressions
WHERE campaign_id = 123
)
SELECT
COUNT(DISTINCT imp.user_id) -
COUNT(DISTINCT exclude.user_id) AS users
FROM adh.google_ads_impressions imp
LEFT JOIN exclude
USING (user_id)
WHERE imp.campaign_id = 876
;
Vlastní překrývání
Tento dotaz zjistí překrývání dvou nebo více kampaní. Lze ho přizpůsobit tak, aby při tom bral v úvahu určitá kritéria.
/* For this query to run, @campaign_1 and @campaign_2 must be replaced with
actual campaign IDs. */
WITH flagged_impressions AS (
SELECT
user_ID,
SUM(IF(campaign_ID in UNNEST(@campaign_1), 1, 0)) AS C1_impressions,
SUM(IF(campaign_ID in UNNEST(@campaign_2), 1, 0)) AS C2_impressions
FROM adh.cm_dt_impressions
GROUP BY user_ID
SELECT COUNTIF(C1_impressions > 0) as C1_cookie_count,
COUNTIF(C2_impressions > 0) as C2_cookie_count,
COUNTIF(C1_impressions > 0 and C2_impressions > 0) as overlap_cookie_count
FROM flagged_impressions
;
Program na reklamy prodávaný partnery – křížový prodej
Tento dotaz zjistí počet zobrazení a prokliků u inventáře prodávaného partnery.
SELECT
a.record_date AS record_date,
a.line_item_id AS line_item_id,
a.creative_id AS creative_id,
a.ad_id AS ad_id,
a.impressions AS impressions,
a.click_through AS click_through,
a.video_skipped AS video_skipped,
b.pixel_url AS pixel_url
FROM
(
SELECT
FORMAT_TIMESTAMP('%D', TIMESTAMP_MICROS(i.query_id.time_usec), 'Etc/UTC') AS record_date,
i.line_item_id as line_item_id,
i.creative_id as creative_id,
i.ad_id as ad_id,
COUNT(i.query_id) as impressions,
COUNTIF(c.label='video_click_to_advertiser_site') AS click_through,
COUNTIF(c.label='videoskipped') AS video_skipped
FROM
adh.partner_sold_cross_sell_impressions AS i
LEFT JOIN adh.partner_sold_cross_sell_conversions AS c
ON i.impression_id = c.impression_id
GROUP BY
1, 2, 3, 4
) AS a
JOIN adh.partner_sold_cross_sell_creative_pixels AS b
ON (a.ad_id = b.ad_id)
;
Zobrazení z obchodů s aplikacemi
Tento dotaz spočítá celkový počet zobrazení seskupených podle aplikace a obchodu s aplikacemi.
SELECT app_store_name, app_name, COUNT(*) AS number
FROM adh.google_ads_impressions AS imp
JOIN adh.mobile_app_info
USING (app_store_id, app_id)
WHERE imp.app_id IS NOT NULL
GROUP BY 1,2
ORDER BY 3 DESC