Exemplos de consultas no Ads Data Hub

Esses exemplos de consulta requerem conhecimento prático de SQL e BigQuery. Saiba mais sobre SQL no BigQuery.

Consultas sobre transferência de dados do Campaign Manager 360

Associar variáveis do Floodlight a tabelas temporárias

Gere uma correspondência entre user_id e variáveis personalizadas do Floodlight na tabela de atividades, que vão ser usadas para agrupar dados próprios e do Campaign Manager 360.


/* Creating the match temp table. This can be a separate query and the
temporary table will persist for 72 hours. */

CREATE TABLE
  temp_table AS (
  SELECT
    user_id,
    REGEXP_EXTRACT(event.other_data, 'u1=([^;]*)') AS u1_val
  FROM
    adh.cm_dt_activities_attributed
  GROUP BY
    1,
    2 )

/* Matching to Campaign Manager 360 impression data */

SELECT
  imp.event.campaign_id,
  temp.u1_val,
  COUNT(*) AS cnt
FROM
  adh.cm_dt_impressions AS imp
JOIN
  tmp.temp_table AS temp USING (user_id)
GROUP BY
  1,
  2

Entrega de impressões

Adequado para o gerenciamento de impressões, este exemplo mostra como saber quantas impressões foram veiculadas além dos limites de frequência ou se os anúncios deixaram de ser mostrados a determinados clientes em potencial. Use essas informações para otimizar seus site e táticas e veicular o número certo de impressões ao público-alvo escolhido.

/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345] */

WITH filtered_uniques AS (
  SELECT
    user_id,
    COUNT(event.placement_id) AS frequency
  FROM adh.cm_dt_impressions
  WHERE user_id != '0'
    AND event.advertiser_id IN UNNEST(@advertiser_ids)
    AND event.campaign_id IN UNNEST(@campaign_ids)
    AND event.country_domain_name = 'US'
  GROUP BY user_id
)
SELECT
  frequency,
  COUNT(*) AS uniques
FROM filtered_uniques
GROUP BY frequency
ORDER BY frequency
;

Este exemplo ajuda a identificar táticas e formatos de anúncios que levam a aumentos ou diminuições na contagem ou na frequência de cookies únicos.

/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */

SELECT
  COUNT(DISTINCT user_id) AS total_users,
  COUNT(DISTINCT event.site_id) AS total_sites,
  COUNT(DISTINCT device_id_md5) AS total_devices,
  COUNT(event.placement_id) AS impressions
FROM adh.cm_dt_impressions
WHERE user_id != '0'
  AND event.advertiser_id IN UNNEST(@advertiser_ids)
  AND event.campaign_id IN UNNEST(@campaign_ids)
  AND event.placement_id IN UNNEST(@placement_ids)
  AND event.country_domain_name = 'US'
;

Você também pode incluir IDs de site ou posição na cláusula WHERE para restringir a consulta.

Este exemplo mescla as tabela cm_dt_impressions e cm_dt_state de metadados para mostrar impressões totais, contagens de cookies por estado e impressões médias por usuário, agrupadas por estado ou província geográfica da América do Norte.


WITH impression_stats AS (
  SELECT
    event.country_domain_name AS country,
    CONCAT(event.country_domain_name, '-', event.state) AS state,
    COUNT(DISTINCT user_id) AS users,
    COUNT(*) AS impressions
  FROM adh.cm_dt_impressions
  WHERE event.country_domain_name = 'US'
    OR event.country_domain_name = 'CA'
  GROUP BY 1, 2
)
SELECT
  country,
  IFNULL(state_name, state) AS state_name,
  users,
  impressions,
  FORMAT(
    '%0.2f',
    IF(
      IFNULL(impressions, 0) = 0,
      0,
      impressions / users
    )
  ) AS avg_imps_per_user
FROM impression_stats
LEFT JOIN adh.cm_dt_state USING (state)
;

Públicos-alvo do Display & Video 360

Este exemplo mostra como analisar os públicos-alvo do Display & Video 360. Saiba quais impressões de público-alvo estão funcionando e quais públicos-alvo têm uma performance melhor. Use essas informações para equilibrar a contagem de cookies únicos (anúncios veiculados a muitos usuários) e a qualidade (segmentação restrita e impressões visíveis), dependendo das suas metas.

/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */

WITH filtered_impressions AS (
  SELECT
    event.event_time as date,
    CASE
      WHEN (event.browser_enum IN ('29', '30', '31')
            OR event.os_id IN
              (501012, 501013, 501017, 501018,
               501019, 501020, 501021, 501022,
               501023, 501024, 501025, 501027))
      THEN 'Mobile'
      ELSE 'Desktop'
    END AS device,
    event.dv360_matching_targeted_segments,
    event.active_view_viewable_impressions,
    event.active_view_measurable_impressions,
    user_id
  FROM adh.cm_dt_impressions
  WHERE event.dv360_matching_targeted_segments != ''
    AND event.advertiser_id in UNNEST(@advertiser_ids)
    AND event.campaign_id IN UNNEST(@campaign_ids)
    AND event.dv360_country_code = 'US'
)
SELECT
  audience_id,
  device,
  COUNT(*) AS impressions,
  COUNT(DISTINCT user_id) AS uniques,
  ROUND(COUNT(*) / COUNT(DISTINCT user_id), 1) AS frequency,
  SUM(active_view_viewable_impressions) AS viewable_impressions,
  SUM(active_view_measurable_impressions) AS measurable_impressions
FROM filtered_impressions
JOIN UNNEST(SPLIT(dv360_matching_targeted_segments, ' ')) AS audience_id
GROUP BY 1, 2
;

Visibilidade

Estes exemplos mostram como medir as métricas de visibilidade do Active View Plus.


WITH T AS (
   SELECT cm_dt_impressions.event.impression_id AS Impression,
          cm_dt_impressions.event.active_view_measurable_impressions AS AV_Measurable,
          SUM(cm_dt_active_view_plus.event.active_view_plus_measurable_count) AS AVP_Measurable
     FROM adh.cm_dt_impressions
FULL JOIN adh.cm_dt_active_view_plus
          ON (cm_dt_impressions.event.impression_id =
              cm_dt_active_view_plus.event.impression_id)
    GROUP BY Impression, AV_Measurable
)
SELECT COUNT(Impression), SUM(AV_Measurable), SUM(AVP_Measurable)
  FROM T
;


WITH Raw AS (
  SELECT
    event.ad_id AS Ad_Id,
  SUM(event.active_view_plus_measurable_count) AS avp_total,
  SUM(event.active_view_first_quartile_viewable_impressions) AS avp_1st_quartile,
  SUM(event.active_view_midpoint_viewable_impressions) AS avp_2nd_quartile,
  SUM(event.active_view_third_quartile_viewable_impressions) AS avp_3rd_quartile,
  SUM(event.active_view_complete_viewable_impressions) AS avp_complete
  FROM
    adh.cm_dt_active_view_plus
  GROUP BY
    1
)

SELECT
  Ad_Id,
  avp_1st_quartile / avp_total AS Viewable_Rate_1st_Quartile,
  avp_2nd_quartile / avp_total AS Viewable_Rate_2nd_Quartile,
    avp_3rd_quartile / avp_total AS Viewable_Rate_3rd_Quartile,
    avp_complete / avp_total AS Viewable_Rate_Completion_Quartile
FROM
  Raw
WHERE
  avp_total > 0
ORDER BY
  Viewable_Rate_1st_Quartile DESC
;

Dados dinâmicos na Transferência de dados do Campaign Manager 360

Impressões por perfil dinâmico e feed

SELECT
  event.dynamic_profile,
  feed_name,
  COUNT(*) as impressions
FROM adh.cm_dt_impressions
JOIN UNNEST (event.feed) as feed_name
GROUP BY 1, 2;

Impressões por rótulo de relatório dinâmico no feed 1

SELECT
  event.feed_reporting_label[SAFE_ORDINAL(1)] feed1_reporting_label,,
  COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(1)] <> “” # where you have at least one reporting label set
GROUP BY 1;

Impressões em que "label" = "red" no relatório do feed 2

SELECT
  event.feed_reporting_label[SAFE_ORDINAL(2)] AS feed1_reporting_label,
  COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(2)] = “red”
GROUP BY 1;

Impressões em que "dimension_1" = "red" e "dimension_2" = "car" no relatório do feed 1

SELECT
  event.feed_reporting_label[SAFE_ORDINAL(1)] AS feed1_reporting_label,
  event.feed_reporting_dimension1[SAFE_ORDINAL(1)] AS feed1_reporting_dimension1,
  event.feed_reporting_dimension2[SAFE_ORDINAL(1)] AS feed2_reporting_dimension1,
  event.feed_reporting_dimension3[SAFE_ORDINAL(1)] AS feed3_reporting_dimension1,
  event.feed_reporting_dimension4[SAFE_ORDINAL(1)] AS feed4_reporting_dimension1,
  event.feed_reporting_dimension5[SAFE_ORDINAL(1)] AS feed5_reporting_dimension1,
  event.feed_reporting_dimension6[SAFE_ORDINAL(1)] AS feed6_reporting_dimension1,
  COUNT(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_dimension1[SAFE_ORDINAL(1)] = “red”
AND event.feed_reporting_dimension2[SAFE_ORDINAL(1)] = “car”
GROUP BY 1,2,3,4,5,6,7;

Formatos dos anúncios na Transferência de dados do Campaign Manager 360

Estes exemplos mostram como determinar quais formatos de anúncios aumentam a contagem dos cookies únicos ou a frequência das impressões. Use essas informações para equilibrar o total de cookies únicos e a exposição dos usuários aos anúncios.

Entrega de impressões

/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset.*/

WITH filtered_uniques AS (
  SELECT
    user_id,
    CASE
      WHEN creative_type LIKE '%Video%' THEN 'Video'
      WHEN creative_type IS NULL THEN 'Unknown'
      ELSE 'Display'
    END AS creative_format,
    COUNT(*) AS impressions
  FROM adh.cm_dt_impressions impression
  LEFT JOIN YOUR_BQ_DATASET.campaigns creative
    ON creative.rendering_id = impression.event.rendering_id
  WHERE user_id != '0'
    AND event.advertiser_id IN UNNEST(@advertiser_ids)
    AND event.campaign_id IN UNNEST(@campaign_ids)
    AND event.country_domain_name = 'US'
  GROUP BY user_id, creative_format
)
SELECT
  impressions AS frequency,
  creative_format,
  COUNT(DISTINCT user_id) AS uniques,
  SUM(impressions) AS impressions
FROM filtered_uniques
GROUP BY frequency, creative_format
ORDER BY frequency
;

/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset. */

WITH filtered_impressions AS (
  SELECT
    event.campaign_id AS campaign_id,
    event.rendering_id AS rendering_id,
    user_id
  FROM adh.cm_dt_impressions
  WHERE user_id != '0'
    AND event.advertiser_id IN UNNEST(@advertiser_ids)
    AND event.campaign_id IN UNNEST(@campaign_ids)
    AND event.country_domain_name = 'US'
)
SELECT
  Campaign,
  CASE
    WHEN creative_type LIKE '%Video%' THEN 'Video'
    WHEN creative_type IS NULL THEN 'Unknown'
    ELSE 'Display'
  END AS creative_format,
  COUNT(DISTINCT user_id) AS users,
  COUNT(*) AS impressions
FROM filtered_impressions
LEFT JOIN YOUR_BQ_DATASET.campaigns USING (campaign_id)
LEFT JOIN YOUR_BQ_DATASET.creatives USING (rendering_id)
GROUP BY 1, 2
;

Impressões de apps para dispositivos móveis com tabelas _rdid

Consulta 1:


SELECT
  campaign_id,
  COUNT(*) AS imp,
  COUNT(DISTINCT user_id) AS users
FROM adh.google_ads_impressions
WHERE is_app_traffic
GROUP BY 1
;

Consulta 2:


SELECT
  campaign_id,
  COUNT(DISTINCT device_id_md5) AS device_ids
FROM adh.google_ads_impressions_rdid
GROUP BY 1
;

Os resultados podem ser agrupados usando "campaign_id".

Entrega por grupo demográfico

Este exemplo mostra como saber quais campanhas estão alcançando um determinado grupo demográfico.

/* For this query to run, @customer_id
must be replaced with an actual ID. For example [12345] */

WITH impression_stats AS (
  SELECT
    campaign_id,
    demographics.gender AS gender_id,
    demographics.age_group AS age_group_id,
    COUNT(DISTINCT user_id) AS users,
    COUNT(*) AS impressions
  FROM adh.google_ads_impressions
  WHERE customer_id = @customer_id
  GROUP BY 1, 2, 3
)
SELECT
  campaign_name,
  gender_name,
  age_group_name,
  users,
  impressions
FROM impression_stats
LEFT JOIN adh.google_ads_campaign USING (campaign_id)
LEFT JOIN adh.gender USING (gender_id)
LEFT JOIN adh.age_group USING (age_group_id)
ORDER BY 1, 2, 3
;

Visibilidade

Para uma perspectiva geral da visibilidade com exemplos de consultas, confira Métricas avançadas do Active View.

SELECT
  customer_id,
  customer_timezone,
  count(1) as impressions
FROM adh.google_ads_impressions i
  INNER JOIN adh.google_ads_customer c
    ON c.customer_id = i.customer_id
WHERE TIMESTAMP_MICROS(i.query_id.time_usec) >= CAST(DATETIME(@date, c.customer_timezone) AS TIMESTAMP)
AND TIMESTAMP_MICROS(i.query_id.time_usec) < CAST(DATETIME_ADD(DATETIME(@date, c.customer_timezone), INTERVAL 1 DAY) AS TIMESTAMP)
GROUP BY customer_id, customer_timezone

Tipo de inventário

Este exemplo de consulta demonstra o conceito de tipo de inventário. Use o campo inventory_type para determinar em qual inventário seus anúncios foram veiculados, como o Gmail ou o YouTube Music. Valores possíveis: YOUTUBE, YOUTUBE_TV, YOUTUBE_MUSIC, SEARCH, GMAIL, OTHER. "OTHER" é a Rede de Display ou de vídeo do Google.

SELECT
 i.campaign_id,
 cmp.campaign_name,
 i.inventory_type,
 COUNT(i.query_id.time_usec) AS impressions
FROM adh.google_ads_impressions i
LEFT JOIN adh.google_ads_campaign cmp ON (i.campaign_id = cmp.campaign_id)
WHERE
 TIMESTAMP_MICROS(i.query_id.time_usec)
  BETWEEN @local_start_date
  AND TIMESTAMP_ADD(@local_start_date,INTERVAL @number_days*24 HOUR)
GROUP BY 1, 2, 3
ORDER BY 4 DESC

Trabalhar com modelos de atribuição

O Ads Data Hub é compatível com modelos de atribuição baseada em dados (DDA) e atribuição de último clique (LCA, na sigla em inglês) nas tabelas de conversões do Google Ads. Antes de 19 de setembro de 2023, somente a LCA era aceita. Os exemplos a seguir mostram como encontrar conversões que usam um dos dois modelos e como utilizar a tabela de metadados de configurações da campanha.

Encontrar conversões de atribuição baseada em dados

Este exemplo mostra conversões que usam o modelo de DDA:

SELECT
  s.name
  SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
  ON (conv.conversion_type = s.conversion_type_id)
WHERE s.action_optimization = 'Primary'
    AND s.attribution_model = 'DATA_DRIVEN'
GROUP BY 1;

Encontrar conversões de atribuição de último clique

Para manter o comportamento legado, adicione uma cláusula WHERE às suas consultas para filtrar os resultados da conversão de atribuição de último clique:

SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 123
  AND conversion_attribution_model_type = 'LAST_CLICK';

Usar a tabela de metadados para filtrar por nome de conversão

Com a tabela de metadados de configurações da campanha, você pode filtrar por nomes significativos em vez de números.

Por exemplo, em vez de filtrar conversões por conversion_type:

SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 291496508;

Utilize uma cláusula JOIN para filtrar usando os campos na tabela de metadados de configurações da campanha:

SELECT SUM(num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
     ON (conv.conversion_type = s.conversion_type_id)
WHERE s.name = 'LTH Android Order';
SELECT s.name, SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
     ON (conv.conversion_type = s.conversion_type_id)
WHERE s.conversion_category = 'PURCHASE'
  AND s.action_optimization = 'Primary'
GROUP BY 1;

Consultas de conjuntos de anúncios do YouTube

Os conjuntos agrupam dois anúncios em um único intervalo durante vídeos mais longos no YouTube. São como intervalos comerciais, mas limitados. Os anúncios veiculados em conjuntos são puláveis. No entanto, se a pessoa pula a primeira publicidade, a segunda é ignorada.

SELECT
 cmp.campaign_name,
 imp.is_app_traffic,
 COUNT(*) AS total_impressions,
 COUNTIF(clk.click_id IS NOT NULL) AS total_trueview_views
FROM adh.google_ads_impressions imp
JOIN adh.google_ads_campaign cmp USING (campaign_id)
JOIN adh.google_ads_adgroup adg USING (adgroup_id)
LEFT JOIN adh.google_ads_clicks clk ON
  imp.impression_id = clk.impression_id
WHERE
 imp.customer_id IN UNNEST(@customer_ids)
 AND adg.adgroup_type = 'VIDEO_TRUE_VIEW_IN_STREAM'
 AND cmp.advertising_channel_type = 'VIDEO'
GROUP BY 1, 2

Métricas de visibilidade do Display & Video 360 por itens de linha

WITH
 imp_stats AS (
   SELECT
     imp.line_item_id,
     count(*) as total_imp,
     SUM(num_active_view_measurable_impression) AS num_measurable_impressions,
     SUM(num_active_view_eligible_impression) AS num_enabled_impressions
   FROM adh.dv360_youtube_impressions imp
   WHERE
     imp.line_item_id IN UNNEST(@line_item_ids)
   GROUP BY 1
 ),
 av_stats AS (
   SELECT
     imp.line_item_id,
     SUM(num_active_view_viewable_impression) AS num_viewable_impressions
   FROM adh.dv360_youtube_impressions imp
   LEFT JOIN
     adh.dv360_youtube_active_views av
     ON imp.impression_id = av.impression_id
   WHERE
     imp.line_item_id IN UNNEST(@line_item_ids)
   GROUP BY 1
 )
SELECT
 li.line_item_name,
 SUM(imp.total_imp) as num_impressions,
 SUM(imp.num_measurable_impressions) AS num_measurable_impressions,
 SUM(imp.num_enabled_impressions) AS num_enabled_impressions,
 SUM(IFNULL(av.num_viewable_impressions, 0)) AS num_viewable_impressions
FROM imp_stats as imp
LEFT JOIN av_stats AS av USING (line_item_id)
JOIN adh.dv360_youtube_lineitem li ON (imp.line_item_id = li.line_item_id)
GROUP BY 1

Consultas do YouTube Reserve

Entrega de impressões por anunciante

Mede o número de impressões e usuários distintos por anunciante. Use essas informações para calcular a média de impressões por usuário (ou "frequência de anúncios").

SELECT
  advertiser_name,
  COUNT(*) AS imp,
  COUNT(DISTINCT user_id) AS users
FROM adh.yt_reserve_impressions AS impressions
JOIN adh.yt_reserve_order order ON impressions.order_id = order.order_id
GROUP BY 1
;

Anúncios pulados

Mede a publicidade pulada por cliente, campanha, grupo de anúncios e criativo.

SELECT
  impression_data.customer_id,
  impression_data.campaign_id,
  impression_data.adgroup_id,
  impression_data.ad_group_creative_id,
  COUNTIF(label = "videoskipped") AS num_skips
FROM
  adh.google_ads_conversions
GROUP BY 1, 2, 3, 4;

Consultas gerais

Subtrair um grupo de usuários de outro

Este exemplo mostra como subtrair um grupo de usuários de outro. Essa técnica tem várias utilidades, por exemplo, na contagem de usuários sem conversões, sem impressões visíveis e sem cliques.

WITH exclude AS (
  SELECT DISTINCT user_id
  FROM adh.google_ads_impressions
  WHERE campaign_id = 123
)

SELECT
  COUNT(DISTINCT imp.user_id) -
      COUNT(DISTINCT exclude.user_id) AS users
FROM adh.google_ads_impressions imp
LEFT JOIN exclude
  USING (user_id)
WHERE imp.campaign_id = 876
;

Sobreposição personalizada

Mede a sobreposição de duas ou mais campanhas e pode ser personalizada com base em critérios opcionais.

/* For this query to run, @campaign_1 and @campaign_2 must be replaced with
actual campaign IDs. */

WITH flagged_impressions AS (
SELECT
  user_ID,
  SUM(IF(campaign_ID in UNNEST(@campaign_1), 1, 0)) AS C1_impressions,
  SUM(IF(campaign_ID in UNNEST(@campaign_2), 1, 0)) AS C2_impressions
FROM adh.cm_dt_impressions
GROUP BY user_ID

SELECT COUNTIF(C1_impressions > 0) as C1_cookie_count,
 COUNTIF(C2_impressions > 0) as C2_cookie_count,
 COUNTIF(C1_impressions > 0 and C2_impressions > 0) as overlap_cookie_count
FROM flagged_impressions
;

Vendas cruzadas comercializadas por parceiros

Mede as impressões e os cliques do inventário vendido por parceiros.

SELECT
  a.record_date AS record_date,
  a.line_item_id AS line_item_id,
  a.creative_id AS creative_id,
  a.ad_id AS ad_id,
  a.impressions AS impressions,
  a.click_through AS click_through,
  a.video_skipped AS video_skipped,
  b.pixel_url AS pixel_url
FROM
  (
    SELECT
      FORMAT_TIMESTAMP('%D', TIMESTAMP_MICROS(i.query_id.time_usec), 'Etc/UTC') AS record_date,
      i.line_item_id as line_item_id,
      i.creative_id as creative_id,
      i.ad_id as ad_id,
      COUNT(i.query_id) as impressions,
      COUNTIF(c.label='video_click_to_advertiser_site') AS click_through,
      COUNTIF(c.label='videoskipped') AS video_skipped
    FROM
      adh.partner_sold_cross_sell_impressions AS i
      LEFT JOIN adh.partner_sold_cross_sell_conversions AS c
        ON i.impression_id = c.impression_id
    GROUP BY
      1, 2, 3, 4
    ) AS a
    JOIN adh.partner_sold_cross_sell_creative_pixels AS b
      ON (a.ad_id = b.ad_id)
;

Impressões na app store

Conta o total de impressões, agrupadas por app store e aplicativo.

SELECT app_store_name, app_name, COUNT(*) AS number
FROM adh.google_ads_impressions AS imp
JOIN adh.mobile_app_info
USING (app_store_id, app_id)
WHERE imp.app_id IS NOT NULL
GROUP BY 1,2
ORDER BY 3 DESC