广告数据中心内的示例查询

以下示例查询假定您具备 SQL 和 BigQuery 方面的实践知识。详细了解 BigQuery 中的 SQL

Campaign Manager 360 数据传输查询

将 Floodlight 变量与临时表相匹配

在活动表中将 user_id 与自定义 Floodlight 变量进行匹配。然后,这可用于将第一方数据与 Campaign Manager 360 数据联接起来。


/* Creating the match temp table. This can be a separate query and the
temporary table will persist for 72 hours. */


CREATE TABLE
  temp_table
AS (
 
SELECT
    user_id
,
    REGEXP_EXTRACT
(event.other_data, 'u1=([^;]*)') AS u1_val
 
FROM
    adh
.cm_dt_activities_attributed
 
GROUP BY
   
1,
   
2 )

/* Matching to Campaign Manager 360 impression data */

SELECT
  imp
.event.campaign_id,
  temp
.u1_val,
  COUNT
(*) AS cnt
FROM
  adh
.cm_dt_impressions AS imp
JOIN
  tmp
.temp_table AS temp USING (user_id)
GROUP BY
 
1,
 
2

投放的展示次数

此示例非常适用于展示次数管理,说明了如何查找超出投放频次上限的展示次数,或向某些潜在客户展示广告的次数是否不足。您可以根据这些信息优化您的网站和策略,从而向所选受众群体进行适当次数的展示。

/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345] */


WITH filtered_uniques AS (
 
SELECT
    user_id
,
    COUNT
(event.placement_id) AS frequency
 
FROM adh.cm_dt_impressions
 
WHERE user_id != '0'
   
AND event.advertiser_id IN UNNEST(@advertiser_ids)
   
AND event.campaign_id IN UNNEST(@campaign_ids)
   
AND event.country_domain_name = 'US'
 
GROUP BY user_id
)
SELECT
  frequency
,
  COUNT
(*) AS uniques
FROM filtered_uniques
GROUP BY frequency
ORDER BY frequency
;

此示例可帮助确定哪些策略和广告格式可提高或降低唯一身份 Cookie 数量或频次。

/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */


SELECT
  COUNT
(DISTINCT user_id) AS total_users,
  COUNT
(DISTINCT event.site_id) AS total_sites,
  COUNT
(DISTINCT device_id_md5) AS total_devices,
  COUNT
(event.placement_id) AS impressions
FROM adh.cm_dt_impressions
WHERE user_id != '0'
 
AND event.advertiser_id IN UNNEST(@advertiser_ids)
 
AND event.campaign_id IN UNNEST(@campaign_ids)
 
AND event.placement_id IN UNNEST(@placement_ids)
 
AND event.country_domain_name = 'US'
;

您还可以在 WHERE 子句中添加网站或展示位置 ID 来缩小查询范围。

此示例将 cm_dt_impressions 表和 cm_dt_state 元数据表联接起来,以显示总展示次数、每个州或省级行政区的 Cookie 数量和向用户平均展示的次数(按北美地理位置上的州或省级行政区划分)。


WITH impression_stats AS (
 
SELECT
    event
.country_domain_name AS country,
    CONCAT
(event.country_domain_name, '-', event.state) AS state,
    COUNT
(DISTINCT user_id) AS users,
    COUNT
(*) AS impressions
 
FROM adh.cm_dt_impressions
 
WHERE event.country_domain_name = 'US'
   
OR event.country_domain_name = 'CA'
 
GROUP BY 1, 2
)
SELECT
  country
,
  IFNULL
(state_name, state) AS state_name,
  users
,
  impressions
,
  FORMAT
(
   
'%0.2f',
   
IF(
      IFNULL
(impressions, 0) = 0,
     
0,
      impressions
/ users
   
)
 
) AS avg_imps_per_user
FROM impression_stats
LEFT JOIN adh.cm_dt_state USING (state)
;

Display & Video 360 受众群体

此示例展示了如何分析 Display & Video 360 受众群体。您可以了解所达到的受众群体展示次数,还可以确定某些受众群体的效果是否优于其他受众群体。这些信息有助于在唯一身份 Cookie 数量(向大量用户展示广告)和质量(缩小定位范围和减少可见展示次数)之间取得平衡,具体取决于您的目标。

/* For this query to run, @advertiser_ids and @campaigns_ids and @placement_ids
must be replaced with actual IDs. For example [12345] */


WITH filtered_impressions AS (
 
SELECT
    event
.event_time as date,
   
CASE
     
WHEN (event.browser_enum IN ('29', '30', '31')
           
OR event.os_id IN
             
(501012, 501013, 501017, 501018,
               
501019, 501020, 501021, 501022,
               
501023, 501024, 501025, 501027))
     
THEN 'Mobile'
     
ELSE 'Desktop'
   
END AS device,
    event
.dv360_matching_targeted_segments,
    event
.active_view_viewable_impressions,
    event
.active_view_measurable_impressions,
    user_id
 
FROM adh.cm_dt_impressions
 
WHERE event.dv360_matching_targeted_segments != ''
   
AND event.advertiser_id in UNNEST(@advertiser_ids)
   
AND event.campaign_id IN UNNEST(@campaign_ids)
   
AND event.dv360_country_code = 'US'
)
SELECT
  audience_id
,
  device
,
  COUNT
(*) AS impressions,
  COUNT
(DISTINCT user_id) AS uniques,
  ROUND
(COUNT(*) / COUNT(DISTINCT user_id), 1) AS frequency,
  SUM
(active_view_viewable_impressions) AS viewable_impressions,
  SUM
(active_view_measurable_impressions) AS measurable_impressions
FROM filtered_impressions
JOIN UNNEST(SPLIT(dv360_matching_targeted_segments, ' ')) AS audience_id
GROUP BY 1, 2
;

可见度

这些示例展示了如何衡量 Active View Plus 可见度指标。


WITH T AS (
   
SELECT cm_dt_impressions.event.impression_id AS Impression,
          cm_dt_impressions
.event.active_view_measurable_impressions AS AV_Measurable,
          SUM
(cm_dt_active_view_plus.event.active_view_plus_measurable_count) AS AVP_Measurable
     
FROM adh.cm_dt_impressions
FULL JOIN adh.cm_dt_active_view_plus
         
ON (cm_dt_impressions.event.impression_id =
              cm_dt_active_view_plus
.event.impression_id)
   
GROUP BY Impression, AV_Measurable
)
SELECT COUNT(Impression), SUM(AV_Measurable), SUM(AVP_Measurable)
 
FROM T
;


WITH Raw AS (
 
SELECT
    event
.ad_id AS Ad_Id,
  SUM
(event.active_view_plus_measurable_count) AS avp_total,
  SUM
(event.active_view_first_quartile_viewable_impressions) AS avp_1st_quartile,
  SUM
(event.active_view_midpoint_viewable_impressions) AS avp_2nd_quartile,
  SUM
(event.active_view_third_quartile_viewable_impressions) AS avp_3rd_quartile,
  SUM
(event.active_view_complete_viewable_impressions) AS avp_complete
 
FROM
    adh
.cm_dt_active_view_plus
 
GROUP BY
   
1
)

SELECT
  Ad_Id
,
  avp_1st_quartile
/ avp_total AS Viewable_Rate_1st_Quartile,
  avp_2nd_quartile
/ avp_total AS Viewable_Rate_2nd_Quartile,
    avp_3rd_quartile
/ avp_total AS Viewable_Rate_3rd_Quartile,
    avp_complete
/ avp_total AS Viewable_Rate_Completion_Quartile
FROM
  Raw
WHERE
  avp_total
> 0
ORDER BY
  Viewable_Rate_1st_Quartile
DESC
;

Campaign Manager 360 数据传输功能中的动态数据

按动态模式配置和 Feed 划分的展示次数

SELECT
  event
.dynamic_profile,
  feed_name
,
  COUNT
(*) as impressions
FROM adh.cm_dt_impressions
JOIN UNNEST (event.feed) as feed_name
GROUP BY 1, 2;

Feed 1 中按动态报告标签划分的展示次数

SELECT
  event
.feed_reporting_label[SAFE_ORDINAL(1)] feed1_reporting_label,,
  COUNT
(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(1)] <> “” # where you have at least one reporting label set
GROUP BY 1;

Feed 2 中报告标签为“红色”的展示次数

SELECT
  event
.feed_reporting_label[SAFE_ORDINAL(2)] AS feed1_reporting_label,
  COUNT
(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_label[SAFE_ORDINAL(2)] = red
GROUP BY 1;

Feed 1 中报告维度 1 为“红色”且报告维度 2 为“汽车”的展示次数

SELECT
  event
.feed_reporting_label[SAFE_ORDINAL(1)] AS feed1_reporting_label,
  event
.feed_reporting_dimension1[SAFE_ORDINAL(1)] AS feed1_reporting_dimension1,
  event
.feed_reporting_dimension2[SAFE_ORDINAL(1)] AS feed2_reporting_dimension1,
  event
.feed_reporting_dimension3[SAFE_ORDINAL(1)] AS feed3_reporting_dimension1,
  event
.feed_reporting_dimension4[SAFE_ORDINAL(1)] AS feed4_reporting_dimension1,
  event
.feed_reporting_dimension5[SAFE_ORDINAL(1)] AS feed5_reporting_dimension1,
  event
.feed_reporting_dimension6[SAFE_ORDINAL(1)] AS feed6_reporting_dimension1,
  COUNT
(*) as impressions
FROM adh.cm_dt_impressions
WHERE event.feed_reporting_dimension1[SAFE_ORDINAL(1)] = red
AND event.feed_reporting_dimension2[SAFE_ORDINAL(1)] = car
GROUP BY 1,2,3,4,5,6,7;

Campaign Manager 360 数据传输功能中的广告格式

这些示例展示了如何确定哪些广告格式能够最大限度提高唯一身份 Cookie 数量或展示频次。您可以根据这些信息在唯一身份 Cookie 总数和向用户展示广告的次数之间取得平衡。

投放的展示次数

/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset.*/


WITH filtered_uniques AS (
 
SELECT
    user_id
,
   
CASE
     
WHEN creative_type LIKE '%Video%' THEN 'Video'
     
WHEN creative_type IS NULL THEN 'Unknown'
     
ELSE 'Display'
   
END AS creative_format,
    COUNT
(*) AS impressions
 
FROM adh.cm_dt_impressions impression
 
LEFT JOIN YOUR_BQ_DATASET.campaigns creative
   
ON creative.rendering_id = impression.event.rendering_id
 
WHERE user_id != '0'
   
AND event.advertiser_id IN UNNEST(@advertiser_ids)
   
AND event.campaign_id IN UNNEST(@campaign_ids)
   
AND event.country_domain_name = 'US'
 
GROUP BY user_id, creative_format
)
SELECT
  impressions
AS frequency,
  creative_format
,
  COUNT
(DISTINCT user_id) AS uniques,
  SUM
(impressions) AS impressions
FROM filtered_uniques
GROUP BY frequency, creative_format
ORDER BY frequency
;

/* For this query to run, @advertiser_ids and @campaigns_ids
must be replaced with actual IDs. For example [12345]. YOUR_BQ_DATASET must be
replaced with the actual name of your dataset. */


WITH filtered_impressions AS (
 
SELECT
    event
.campaign_id AS campaign_id,
    event
.rendering_id AS rendering_id,
    user_id
 
FROM adh.cm_dt_impressions
 
WHERE user_id != '0'
   
AND event.advertiser_id IN UNNEST(@advertiser_ids)
   
AND event.campaign_id IN UNNEST(@campaign_ids)
   
AND event.country_domain_name = 'US'
)
SELECT
  Campaign
,
 
CASE
   
WHEN creative_type LIKE '%Video%' THEN 'Video'
   
WHEN creative_type IS NULL THEN 'Unknown'
   
ELSE 'Display'
 
END AS creative_format,
  COUNT
(DISTINCT user_id) AS users,
  COUNT
(*) AS impressions
FROM filtered_impressions
LEFT JOIN YOUR_BQ_DATASET.campaigns USING (campaign_id)
LEFT JOIN YOUR_BQ_DATASET.creatives USING (rendering_id)
GROUP BY 1, 2
;

移动应用广告展示次数与 _rdid 表

查询 1:


SELECT
  campaign_id
,
  COUNT
(*) AS imp,
  COUNT
(DISTINCT user_id) AS users
FROM adh.google_ads_impressions
WHERE is_app_traffic
GROUP BY 1
;

查询 2:


SELECT
  campaign_id
,
  COUNT
(DISTINCT device_id_md5) AS device_ids
FROM adh.google_ads_impressions_rdid
GROUP BY 1
;

结果可使用 campaign_id 联接起来。

根据受众特征投放次数

此示例展示了如何确定哪些广告系列在覆盖具有指定受众特征的受众群体。

/* For this query to run, @customer_id
must be replaced with an actual ID. For example [12345] */


WITH impression_stats AS (
 
SELECT
    campaign_id
,
    demographics
.gender AS gender_id,
    demographics
.age_group AS age_group_id,
    COUNT
(DISTINCT user_id) AS users,
    COUNT
(*) AS impressions
 
FROM adh.google_ads_impressions
 
WHERE customer_id = @customer_id
 
GROUP BY 1, 2, 3
)
SELECT
  campaign_name
,
  gender_name
,
  age_group_name
,
  users
,
  impressions
FROM impression_stats
LEFT JOIN adh.google_ads_campaign USING (campaign_id)
LEFT JOIN adh.gender USING (gender_id)
LEFT JOIN adh.age_group USING (age_group_id)
ORDER BY 1, 2, 3
;

可见度

如需简要了解可见度和查询示例,请参阅高级 Active View 指标

SELECT
  customer_id
,
  customer_timezone
,
  count
(1) as impressions
FROM adh.google_ads_impressions i
 
INNER JOIN adh.google_ads_customer c
   
ON c.customer_id = i.customer_id
WHERE TIMESTAMP_MICROS(i.query_id.time_usec) >= CAST(DATETIME(@date, c.customer_timezone) AS TIMESTAMP)
AND TIMESTAMP_MICROS(i.query_id.time_usec) < CAST(DATETIME_ADD(DATETIME(@date, c.customer_timezone), INTERVAL 1 DAY) AS TIMESTAMP)
GROUP BY customer_id, customer_timezone

广告资源类型

此示例查询演示了广告资源类型的概念。您可以使用 inventory_type 字段来确定在哪些广告资源中投放广告,例如 Gmail 或 YouTube Music。可能的值:YOUTUBEYOUTUBE_TVYOUTUBE_MUSICSEARCHGMAILOTHER。“Other”是指 Google 展示广告网络或视频广告网络。

SELECT
 i
.campaign_id,
 cmp
.campaign_name,
 i
.inventory_type,
 COUNT
(i.query_id.time_usec) AS impressions
FROM adh.google_ads_impressions i
LEFT JOIN adh.google_ads_campaign cmp ON (i.campaign_id = cmp.campaign_id)
WHERE
 TIMESTAMP_MICROS
(i.query_id.time_usec)
 
BETWEEN @local_start_date
 
AND TIMESTAMP_ADD(@local_start_date,INTERVAL @number_days*24 HOUR)
GROUP BY 1, 2, 3
ORDER BY 4 DESC

使用归因模型

广告数据中心支持 Google Ads 转化次数表中的以数据为依据的归因 (DDA) 模型和最终点击归因 (LCA) 模型。2023 年 9 月 19 日之前,仅支持 LCA。以下示例展示了如何查找使用这两种模型的转化,以及如何使用转化设置元数据表。

查找以数据为依据的归因转化

此示例查找使用 DDA 模型的转化:

SELECT
  s
.name
  SUM
(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
 
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.action_optimization = 'Primary'
   
AND s.attribution_model = 'DATA_DRIVEN'
GROUP BY 1;

查找最终点击归因转化

要保持旧版行为,请在查询中添加 WHERE 子句以过滤最终点击归因转化结果:

SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 123
 
AND conversion_attribution_model_type = 'LAST_CLICK';

使用元数据表按转化名称进行过滤

借助转化设置元数据表,您可以按有意义的名称而不是数字进行过滤。

例如,不按 conversion_type 过滤转化:

SELECT COUNT(*)
FROM adh.google_ads_conversions
WHERE conversion_type = 291496508;

使用 JOIN 子句,使用转化设置元数据表中的字段进行过滤:

SELECT SUM(num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
     
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.name = 'LTH Android Order';
SELECT s.name, SUM(conv.num_conversion_micros)/1000000 AS num_convs
FROM adh.google_ads_conversions AS conv
JOIN adh.google_ads_conversion_settings AS s
     
ON (conv.conversion_type = s.conversion_type_id)
WHERE s.conversion_category = 'PURCHASE'
 
AND s.action_optimization = 'Primary'
GROUP BY 1;

YouTube 广告连播查询

在较长的 YouTube 观看会话中,广告连播会将 2 个广告划分到一个广告插播时间点(可以看作是商业广告插播时段,但仅限 2 个广告)。在广告连播时投放的广告仍可跳过。但是,如果用户跳过第一个广告,则第二个广告也会被跳过。

SELECT
 cmp
.campaign_name,
 imp
.is_app_traffic,
 COUNT
(*) AS total_impressions,
 COUNTIF
(clk.click_id IS NOT NULL) AS total_trueview_views
FROM adh.google_ads_impressions imp
JOIN adh.google_ads_campaign cmp USING (campaign_id)
JOIN adh.google_ads_adgroup adg USING (adgroup_id)
LEFT JOIN adh.google_ads_clicks clk ON
  imp
.impression_id = clk.impression_id
WHERE
 imp
.customer_id IN UNNEST(@customer_ids)
 
AND adg.adgroup_type = 'VIDEO_TRUE_VIEW_IN_STREAM'
 
AND cmp.advertising_channel_type = 'VIDEO'
GROUP BY 1, 2

Display & Video 360 可见度指标(按订单项划分)

WITH
 imp_stats
AS (
   
SELECT
     imp
.line_item_id,
     count
(*) as total_imp,
     SUM
(num_active_view_measurable_impression) AS num_measurable_impressions,
     SUM
(num_active_view_eligible_impression) AS num_enabled_impressions
   
FROM adh.dv360_youtube_impressions imp
   
WHERE
     imp
.line_item_id IN UNNEST(@line_item_ids)
   
GROUP BY 1
 
),
 av_stats
AS (
   
SELECT
     imp
.line_item_id,
     SUM
(num_active_view_viewable_impression) AS num_viewable_impressions
   
FROM adh.dv360_youtube_impressions imp
   
LEFT JOIN
     adh
.dv360_youtube_active_views av
     
ON imp.impression_id = av.impression_id
   
WHERE
     imp
.line_item_id IN UNNEST(@line_item_ids)
   
GROUP BY 1
 
)
SELECT
 li
.line_item_name,
 SUM
(imp.total_imp) as num_impressions,
 SUM
(imp.num_measurable_impressions) AS num_measurable_impressions,
 SUM
(imp.num_enabled_impressions) AS num_enabled_impressions,
 SUM
(IFNULL(av.num_viewable_impressions, 0)) AS num_viewable_impressions
FROM imp_stats as imp
LEFT JOIN av_stats AS av USING (line_item_id)
JOIN adh.dv360_youtube_lineitem li ON (imp.line_item_id = li.line_item_id)
GROUP BY 1

YouTube 预订型广告资源查询

投放的展示次数(按广告客户划分)

此查询衡量的是每位广告客户获得的展示次数和去重用户数。您可以根据这些数据来计算向每位用户平均展示的次数(或“广告展示频次”)。

SELECT
  advertiser_name
,
  COUNT
(*) AS imp,
  COUNT
(DISTINCT user_id) AS users
FROM adh.yt_reserve_impressions AS impressions
JOIN adh.yt_reserve_order order ON impressions.order_id = order.order_id
GROUP BY 1
;

广告跳过次数

此查询衡量的是每个客户、广告系列、广告组和广告素材的广告跳过次数。

SELECT
  impression_data
.customer_id,
  impression_data
.campaign_id,
  impression_data
.adgroup_id,
  impression_data
.ad_group_creative_id,
  COUNTIF
(label = "videoskipped") AS num_skips
FROM
  adh
.google_ads_conversions
GROUP BY 1, 2, 3, 4;

宽泛查询

将一组用户从另一组用户中减去

此示例展示了如何将一组用户从另一组用户中减去。此方法的应用范围十分广泛,包括统计未转化用户数、未获得任何可见展示的用户数,以及未点击的用户数。

WITH exclude AS (
 
SELECT DISTINCT user_id
 
FROM adh.google_ads_impressions
 
WHERE campaign_id = 123
)

SELECT
  COUNT
(DISTINCT imp.user_id) -
      COUNT
(DISTINCT exclude.user_id) AS users
FROM adh.google_ads_impressions imp
LEFT JOIN exclude
  USING
(user_id)
WHERE imp.campaign_id = 876
;

自定义重叠

此查询衡量的是 2 个或更多广告系列的重叠情况。您可以根据自行决定的条件对其进行自定义,以衡量重叠情况。

/* For this query to run, @campaign_1 and @campaign_2 must be replaced with
actual campaign IDs. */


WITH flagged_impressions AS (
SELECT
  user_ID
,
  SUM
(IF(campaign_ID in UNNEST(@campaign_1), 1, 0)) AS C1_impressions,
  SUM
(IF(campaign_ID in UNNEST(@campaign_2), 1, 0)) AS C2_impressions
FROM adh.cm_dt_impressions
GROUP BY user_ID

SELECT COUNTIF(C1_impressions > 0) as C1_cookie_count,
 COUNTIF
(C2_impressions > 0) as C2_cookie_count,
 COUNTIF
(C1_impressions > 0 and C2_impressions > 0) as overlap_cookie_count
FROM flagged_impressions
;

合作伙伴出售计划 - 交叉销售

此查询衡量的是合作伙伴出售计划中广告资源获得的展示次数和点击次数。

SELECT
  a
.record_date AS record_date,
  a
.line_item_id AS line_item_id,
  a
.creative_id AS creative_id,
  a
.ad_id AS ad_id,
  a
.impressions AS impressions,
  a
.click_through AS click_through,
  a
.video_skipped AS video_skipped,
  b
.pixel_url AS pixel_url
FROM
 
(
   
SELECT
      FORMAT_TIMESTAMP
('%D', TIMESTAMP_MICROS(i.query_id.time_usec), 'Etc/UTC') AS record_date,
      i
.line_item_id as line_item_id,
      i
.creative_id as creative_id,
      i
.ad_id as ad_id,
      COUNT
(i.query_id) as impressions,
      COUNTIF
(c.label='video_click_to_advertiser_site') AS click_through,
      COUNTIF
(c.label='videoskipped') AS video_skipped
   
FROM
      adh
.partner_sold_cross_sell_impressions AS i
     
LEFT JOIN adh.partner_sold_cross_sell_conversions AS c
       
ON i.impression_id = c.impression_id
   
GROUP BY
     
1, 2, 3, 4
   
) AS a
   
JOIN adh.partner_sold_cross_sell_creative_pixels AS b
     
ON (a.ad_id = b.ad_id)
;

按应用商店划分的展示次数

以下查询统计的是按应用商店和应用划分的总展示次数。

SELECT app_store_name, app_name, COUNT(*) AS number
FROM adh.google_ads_impressions AS imp
JOIN adh.mobile_app_info
USING
(app_store_id, app_id)
WHERE imp.app_id IS NOT NULL
GROUP BY 1,2
ORDER BY 3 DESC