เกี่ยวกับ Codelab นี้
1 准备工作
在此 Codelab 中,您将学习使用大型数据集训练 CNN,这有助于避免过拟合问题。
前提条件
如果您之前未使用过 TensorFlow 构建卷积,可能需要完成构建卷积并执行池化 Codelab(我们在其中介绍了卷积和池化),以及构建卷积神经网络 (CNN) 以增强计算机视觉 Codelab(我们在其中探讨了如何使计算机更加高效地识别图像)。
学习内容
- 如何避免过拟合
您将构建的内容
- CNN,训练后用于识别猫或狗的图像(基于经典的 Kaggle 挑战)。
所需条件
您可以找到在 Colab 中运行其余 Codelab 的代码。
您还需要安装 TensorFlow 以及您在上一个 Codelab 中安装的库。
2 使用猫和狗的大型数据集进行训练
在此 Codelab 中,您将使用一个真实且非常庞大的数据集,并了解它对避免过拟合的影响。
首先,使用必要的库设置您所需的开发环境。
import os
import zipfile
import random
import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from shutil import copyfile
3 获取数据
Kaggle 挑战的完整数据集由 Microsoft 提供。您可以在此处找到该数据。如果以下代码块中的网址不起作用,请参阅注释中的说明。
# If the URL doesn't work, visit https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765
# And right click on the 'Download Manually' link to get a new URL to the dataset
# Note: This is a very large dataset and will take time to download
!wget --no-check-certificate "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip" -O "/tmp/cats-and-dogs.zip"
local_zip = '/tmp/cats-and-dogs.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp')
zip_ref.close()
print(len(os.listdir('/tmp/PetImages/Cat/')))
print(len(os.listdir('/tmp/PetImages/Dog/')))
# Expected Output:
# 12501
# 12501
4 准备数据
下载数据后,将其解压缩到训练和测试目录中。以下代码可以实现此目的:
try:
os.mkdir('/tmp/cats-v-dogs')
os.mkdir('/tmp/cats-v-dogs/training')
os.mkdir('/tmp/cats-v-dogs/testing')
os.mkdir('/tmp/cats-v-dogs/training/cats')
os.mkdir('/tmp/cats-v-dogs/training/dogs')
os.mkdir('/tmp/cats-v-dogs/testing/cats')
os.mkdir('/tmp/cats-v-dogs/testing/dogs')
except OSError:
pass
def split_data(SOURCE, TRAINING, TESTING, SPLIT_SIZE):
files = []
for filename in os.listdir(SOURCE):
file = SOURCE + filename
if os.path.getsize(file) > 0:
files.append(filename)
else:
print(filename + " is zero length, so ignoring.")
training_length = int(len(files) * SPLIT_SIZE)
testing_length = int(len(files) - training_length)
shuffled_set = random.sample(files, len(files))
training_set = shuffled_set[0:training_length]
testing_set = shuffled_set[:testing_length]
for filename in training_set:
this_file = SOURCE + filename
destination = TRAINING + filename
copyfile(this_file, destination)
for filename in testing_set:
this_file = SOURCE + filename
destination = TESTING + filename
copyfile(this_file, destination)
CAT_SOURCE_DIR = "/tmp/PetImages/Cat/"
TRAINING_CATS_DIR = "/tmp/cats-v-dogs/training/cats/"
TESTING_CATS_DIR = "/tmp/cats-v-dogs/testing/cats/"
DOG_SOURCE_DIR = "/tmp/PetImages/Dog/"
TRAINING_DOGS_DIR = "/tmp/cats-v-dogs/training/dogs/"
TESTING_DOGS_DIR = "/tmp/cats-v-dogs/testing/dogs/"
split_size = .9
split_data(CAT_SOURCE_DIR, TRAINING_CATS_DIR, TESTING_CATS_DIR, split_size)
split_data(DOG_SOURCE_DIR, TRAINING_DOGS_DIR, TESTING_DOGS_DIR, split_size)
# Expected output
# 666.jpg is zero length, so ignoring
# 11702.jpg is zero length, so ignoring
您可以使用以下代码检查您的数据是否已正确解压:
print(len(os.listdir('/tmp/cats-v-dogs/training/cats/')))
print(len(os.listdir('/tmp/cats-v-dogs/training/dogs/')))
print(len(os.listdir('/tmp/cats-v-dogs/testing/cats/')))
print(len(os.listdir('/tmp/cats-v-dogs/testing/dogs/')))
# Expected output:
# 11250
# 11250
# 1250
# 1250
5 定义模型
接下来,将模型定义为一系列具有最大池化的卷积层。
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer=RMSprop(lr=0.001), loss='binary_crossentropy', metrics=['accuracy'])
6 训练模型
现在模型已经定义,您可以使用 ImageDataGenerator 训练模型。
TRAINING_DIR = "/tmp/cats-v-dogs/training/"
train_datagen = ImageDataGenerator(rescale=1.0/255.)
train_generator = train_datagen.flow_from_directory(TRAINING_DIR,
batch_size=100,
class_mode='binary',
target_size=(150, 150))
VALIDATION_DIR = "/tmp/cats-v-dogs/testing/"
validation_datagen = ImageDataGenerator(rescale=1.0/255.)
validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR,
batch_size=100,
class_mode='binary',
target_size=(150, 150))
# Expected Output:
# Found 22498 images belonging to 2 classes.
# Found 2500 images belonging to 2 classes.
为了训练模型,您现在可以调用 model.fit_generator
,并将其传递给您创建的生成器。
# Note that this may take some time.
history = model.fit_generator(train_generator,
epochs=15,
verbose=1,
validation_data=validation_generator)
7 探索结果
您可以使用以下代码探索训练和验证的准确率并绘制图表。请使用此代码了解何时达到训练效率上限,并查看是否过拟合。
%matplotlib inline
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
#-----------------------------------------------------------
# Retrieve a list of list results on training and test data
# sets for each training epoch
#-----------------------------------------------------------
acc=history.history['accuracy']
val_acc=history.history['val_accuracy']
loss=history.history['loss']
val_loss=history.history['val_loss']
epochs=range(len(acc)) # Get number of epochs
#------------------------------------------------
# Plot training and validation accuracy per epoch
#------------------------------------------------
plt.plot(epochs, acc, 'r', "Training Accuracy")
plt.plot(epochs, val_acc, 'b', "Validation Accuracy")
plt.title('Training and validation accuracy')
plt.figure()
#------------------------------------------------
# Plot training and validation loss per epoch
#------------------------------------------------
plt.plot(epochs, loss, 'r', "Training Loss")
plt.plot(epochs, val_loss, 'b', "Validation Loss")
plt.figure()
8 测试模型
如果要使用模型旋转图像,可以使用以下代码。请上传图像,了解模型如何对图像进行分类!
# Here's a codeblock just for fun. You should be able to upload an image here
# and have it classified without crashing
import numpy as np
from google.colab import files
from keras.preprocessing import image
uploaded = files.upload()
for fn in uploaded.keys():
# predicting images
path = '/content/' + fn
img = image.load_img(path, target_size=(150, 150))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(classes[0])
if classes[0]>0.5:
print(fn + " is a dog")
else:
print(fn + " is a cat")
9 恭喜
现在,您已了解了机器学习的基础知识,包括从基本原理到创建卷积神经网络!
了解详情
如需了解机器学习和 TensorFlow 可以如何帮助您创建计算机视觉模型,请访问 TensorFlow.org。