Bảng thuật ngữ về công nghệ máy học: AI tạo sinh

Trang này chứa các thuật ngữ trong từ điển về AI tạo sinh. Để xem tất cả các thuật ngữ trong từ điển, hãy nhấp vào đây.

A

đánh giá tự động

#language
#generativeAI

Sử dụng phần mềm để đánh giá chất lượng đầu ra của một mô hình.

Khi đầu ra của mô hình tương đối đơn giản, tập lệnh hoặc chương trình có thể so sánh đầu ra của mô hình với phản hồi chuẩn. Loại hình đánh giá tự động này đôi khi được gọi là đánh giá có lập trình. Các chỉ số như ROUGE hoặc BLEU thường hữu ích cho việc đánh giá theo phương thức lập trình.

Khi đầu ra của mô hình phức tạp hoặc không có câu trả lời đúng, một chương trình ML riêng biệt có tên là trình tự động đánh giá đôi khi sẽ thực hiện việc đánh giá tự động.

Khác với quy trình đánh giá thủ công.

đánh giá trình tự động đánh giá

#language
#generativeAI
Cơ chế kết hợp để đánh giá chất lượng của kết quả đầu ra của mô hình AI tạo sinh, kết hợp quy trình đánh giá của con người với quy trình đánh giá tự động. Trình tự động chấm điểm là một mô hình học máy được huấn luyện dựa trên dữ liệu do hoạt động đánh giá của con người tạo ra. Lý tưởng nhất là trình tự động đánh giá sẽ học cách bắt chước một người đánh giá.

Bạn có thể sử dụng các trình tự động đánh giá tạo sẵn, nhưng các trình tự động đánh giá tốt nhất được điều chỉnh chính xác cho nhiệm vụ mà bạn đang đánh giá.

mô hình tự hồi quy

#language
#image
#generativeAI

Mô hình suy luận một dự đoán dựa trên các dự đoán trước đó của chính mô hình đó. Ví dụ: mô hình ngôn ngữ tự hồi quy dự đoán mã thông báo tiếp theo dựa trên các mã thông báo đã dự đoán trước đó. Tất cả mô hình ngôn ngữ lớn dựa trên Transformer đều tự hồi quy.

Ngược lại, các mô hình hình ảnh dựa trên GAN thường không tự động hồi quy vì các mô hình này tạo hình ảnh trong một lượt truyền tới và không lặp lại theo các bước. Tuy nhiên, một số mô hình tạo hình ảnh tự hồi quy vì tạo hình ảnh theo từng bước.

C

câu lệnh gợi ý theo chuỗi suy nghĩ

#language
#generativeAI

Kỹ thuật kỹ thuật câu lệnh khuyến khích mô hình ngôn ngữ lớn (LLM) giải thích từng bước lý do của nó. Ví dụ: hãy xem xét câu lệnh sau, chú ý đặc biệt đến câu thứ hai:

Tài xế sẽ phải chịu bao nhiêu lực g khi lái một chiếc xe tăng tốc từ 0 lên 60 dặm/giờ trong 7 giây? Trong câu trả lời, hãy trình bày tất cả các phép tính liên quan.

Phản hồi của LLM có thể:

  • Hiển thị một chuỗi các công thức vật lý, cắm các giá trị 0, 60 và 7 vào các vị trí thích hợp.
  • Giải thích lý do chọn những công thức đó và ý nghĩa của các biến.

Lệnh nhắc theo chuỗi suy nghĩ buộc LLM thực hiện tất cả các phép tính, điều này có thể dẫn đến câu trả lời chính xác hơn. Ngoài ra, lời nhắc chuỗi suy nghĩ cho phép người dùng kiểm tra các bước của LLM để xác định xem câu trả lời có hợp lý hay không.

trò chuyện

#language
#generativeAI

Nội dung của cuộc trò chuyện qua lại với một hệ thống học máy, thường là một mô hình ngôn ngữ lớn. Hoạt động tương tác trước đó trong cuộc trò chuyện (những gì bạn đã nhập và cách mô hình ngôn ngữ lớn phản hồi) trở thành ngữ cảnh cho các phần tiếp theo của cuộc trò chuyện.

Chatbot là một ứng dụng của mô hình ngôn ngữ lớn.

Nhúng ngôn ngữ theo ngữ cảnh

#language
#generativeAI

Một mã nhúng gần như "hiểu" các từ và cụm từ theo cách mà người bản địa có thể hiểu. Các phần nhúng ngôn ngữ theo ngữ cảnh có thể hiểu được cú pháp, ngữ nghĩa và ngữ cảnh phức tạp.

Ví dụ: hãy xem xét các phần nhúng của từ tiếng Anh cow. Các phương pháp nhúng cũ hơn như word2vec có thể biểu thị các từ tiếng Anh sao cho khoảng cách trong không gian nhúng từ cow (bò) đến bull (bò đực) tương tự như khoảng cách từ ewe (cừu cái) đến ram (cừu đực) hoặc từ female (nữ) đến male (nam). Tính năng nhúng ngôn ngữ theo ngữ cảnh có thể tiến xa hơn bằng cách nhận ra rằng người nói tiếng Anh đôi khi sử dụng từ cow (bò) để chỉ bò cái hoặc bò đực.

cửa sổ ngữ cảnh

#language
#generativeAI

Số lượng mã thông báo mà một mô hình có thể xử lý trong một lời nhắc nhất định. Cửa sổ ngữ cảnh càng lớn, mô hình càng có thể sử dụng nhiều thông tin để đưa ra các phản hồi nhất quán và rõ ràng cho câu lệnh.

D

lời nhắc trực tiếp

#language
#generativeAI

Đồng nghĩa với câu lệnh gợi ý không có ví dụ.

chưng cất

#generativeAI

Quá trình giảm kích thước của một mô hình (được gọi là giáo viên) thành một mô hình nhỏ hơn (được gọi là học viên) mô phỏng dự đoán của mô hình ban đầu một cách trung thực nhất có thể. Quá trình chắt lọc rất hữu ích vì mô hình nhỏ hơn có hai lợi ích chính so với mô hình lớn hơn (giáo viên):

  • Thời gian suy luận nhanh hơn
  • Giảm mức sử dụng bộ nhớ và năng lượng

Tuy nhiên, dự đoán của học viên thường không chính xác bằng dự đoán của giáo viên.

Quá trình chưng cất sẽ huấn luyện mô hình học viên để giảm thiểu hàm tổn thất dựa trên sự khác biệt giữa kết quả dự đoán của mô hình học viên và mô hình giáo viên.

So sánh và đối chiếu quá trình chưng cất với các thuật ngữ sau:

Hãy xem phần LLM: Điều chỉnh, chắt lọc và kỹ thuật gợi ý trong khoá học cấp tốc về học máy để biết thêm thông tin.

E

evals

#language
#generativeAI

Chủ yếu dùng làm từ viết tắt của các hoạt động đánh giá LLM. Nói rộng ra, evals là viết tắt của mọi hình thức đánh giá.

đánh giá

#language
#generativeAI

Quy trình đo lường chất lượng của một mô hình hoặc so sánh các mô hình với nhau.

Để đánh giá mô hình học máy có giám sát, bạn thường đánh giá mô hình đó dựa trên tập hợp dữ liệu xác thựctập hợp dữ liệu kiểm thử. Việc đánh giá LLM thường liên quan đến các hoạt động đánh giá chất lượng và độ an toàn ở phạm vi rộng hơn.

F

tính xác thực

#generativeAI

Trong thế giới học máy, một thuộc tính mô tả một mô hình có đầu ra dựa trên thực tế. Tính xác thực là một khái niệm chứ không phải chỉ số. Ví dụ: giả sử bạn gửi lời nhắc sau đây đến một mô hình ngôn ngữ lớn:

Công thức hoá học của muối ăn là gì?

Mô hình tối ưu hoá tính xác thực sẽ trả lời:

NaCl

Rất dễ nhầm tưởng rằng tất cả mô hình đều phải dựa trên thực tế. Tuy nhiên, một số câu lệnh, chẳng hạn như câu lệnh sau, sẽ khiến mô hình AI tạo sinh tối ưu hoá sáng tạo thay vì tính xác thực.

Kể cho tôi nghe một bài thơ lục bát về một phi hành gia và một con sâu bướm.

Rất có thể bài thơ limerick thu được sẽ không dựa trên thực tế.

Tương phản với chân thực.

đặt câu lệnh dựa trên một vài ví dụ

#language
#generativeAI

Một lệnh gọi chứa nhiều ví dụ ("một vài") minh hoạ cách mô hình ngôn ngữ lớn phản hồi. Ví dụ: câu lệnh dài sau đây chứa hai ví dụ cho thấy một mô hình ngôn ngữ lớn cách trả lời truy vấn.

Các phần của một câu lệnh Ghi chú
Đơn vị tiền tệ chính thức của quốc gia đã chỉ định là gì? Câu hỏi mà bạn muốn LLM trả lời.
Pháp: EUR Một ví dụ.
Vương quốc Anh: Bảng Anh (GBP) Một ví dụ khác.
Ấn Độ: Cụm từ tìm kiếm thực tế.

Lệnh nhắc ít lần thường mang lại kết quả mong muốn hơn so với lệnh nhắc không có lần nàolệnh nhắc một lần. Tuy nhiên, tính năng đặt câu lệnh dựa trên một vài ví dụ yêu cầu câu lệnh dài hơn.

Đặt câu lệnh dựa trên một vài ví dụ là một hình thức học từ một vài dữ liệu áp dụng cho học dựa trên câu lệnh.

Hãy xem phần Kỹ thuật câu lệnh trong khoá học Học máy ứng dụng để biết thêm thông tin.

tinh chỉnh

#language
#image
#generativeAI

Lần truyền huấn luyện thứ hai, dành riêng cho tác vụ, được thực hiện trên một mô hình được huấn luyện trước để tinh chỉnh các tham số của mô hình cho một trường hợp sử dụng cụ thể. Ví dụ: trình tự huấn luyện đầy đủ cho một số mô hình ngôn ngữ lớn như sau:

  1. Huấn luyện trước: Huấn luyện một mô hình ngôn ngữ lớn trên một tập dữ liệu chung khổng lồ, chẳng hạn như tất cả các trang Wikipedia bằng tiếng Anh.
  2. Điều chỉnh chi tiết: Huấn luyện mô hình đã huấn luyện trước để thực hiện một nhiệm vụ cụ thể, chẳng hạn như phản hồi các truy vấn y tế. Việc tinh chỉnh thường liên quan đến hàng trăm hoặc hàng nghìn ví dụ tập trung vào một nhiệm vụ cụ thể.

Ví dụ khác: trình tự huấn luyện đầy đủ cho mô hình hình ảnh lớn như sau:

  1. Huấn luyện trước: Huấn luyện một mô hình hình ảnh lớn trên một tập dữ liệu hình ảnh chung rộng lớn, chẳng hạn như tất cả hình ảnh trong Wikimedia Commons.
  2. Điều chỉnh chi tiết: Huấn luyện mô hình đã huấn luyện trước để thực hiện một nhiệm vụ cụ thể, chẳng hạn như tạo hình ảnh cá voi sát thủ.

Việc tinh chỉnh có thể bao gồm bất kỳ tổ hợp nào của các chiến lược sau:

  • Sửa đổi tất cả tham số hiện có của mô hình được huấn luyện trước. Đôi khi, quá trình này được gọi là điều chỉnh chi tiết đầy đủ.
  • Chỉ sửa đổi một số tham số hiện có của mô hình được huấn luyện trước (thường là các lớp gần nhất với lớp đầu ra), trong khi giữ nguyên các tham số hiện có khác (thường là các lớp gần nhất với lớp đầu vào). Xem phần chỉnh sửa hiệu quả thông số.
  • Thêm các lớp khác, thường là trên các lớp hiện có gần nhất với lớp đầu ra.

Điều chỉnh chi tiết là một hình thức học chuyển đổi. Do đó, việc tinh chỉnh có thể sử dụng một hàm tổn thất hoặc loại mô hình khác với những hàm và loại mô hình dùng để huấn luyện mô hình được huấn luyện trước. Ví dụ: bạn có thể điều chỉnh mô hình hình ảnh lớn được huấn luyện trước để tạo mô hình hồi quy trả về số lượng chim trong hình ảnh đầu vào.

So sánh và đối chiếu việc tinh chỉnh với các thuật ngữ sau:

Hãy xem phần Chỉnh sửa chi tiết trong Khoá học học máy ứng dụng để biết thêm thông tin.

phân số thành công

#generativeAI

Chỉ số để đánh giá văn bản do mô hình học máy tạo. Phần trăm thành công là số lượng đầu ra văn bản "thành công" được tạo chia cho tổng số đầu ra văn bản được tạo. Ví dụ: nếu một mô hình ngôn ngữ lớn tạo ra 10 khối mã, trong đó 5 khối mã thành công, thì tỷ lệ thành công sẽ là 50%.

Mặc dù tỷ lệ thành công hữu ích rộng rãi trong số liệu thống kê, nhưng trong ML, chỉ số này chủ yếu hữu ích để đo lường các nhiệm vụ có thể xác minh như tạo mã hoặc bài toán toán học.

G

Gemini

#language
#image
#generativeAI

Hệ sinh thái bao gồm AI tiên tiến nhất của Google. Các thành phần của hệ sinh thái này bao gồm:

  • Nhiều mô hình Gemini.
  • Giao diện trò chuyện tương tác với mô hình Gemini. Người dùng nhập câu lệnh và Gemini sẽ phản hồi các câu lệnh đó.
  • Nhiều API Gemini.
  • Nhiều sản phẩm dành cho doanh nghiệp dựa trên các mô hình Gemini; ví dụ: Gemini cho Google Cloud.

Mô hình Gemini

#language
#image
#generativeAI

Các mô hình đa phương thức dựa trên Transformer tiên tiến của Google. Các mô hình Gemini được thiết kế riêng để tích hợp với các tác nhân.

Người dùng có thể tương tác với các mô hình Gemini theo nhiều cách, bao gồm cả thông qua giao diện hộp thoại tương tác và thông qua SDK.

văn bản được tạo

#language
#generativeAI

Nhìn chung, văn bản mà mô hình học máy xuất ra. Khi đánh giá mô hình ngôn ngữ lớn, một số chỉ số sẽ so sánh văn bản được tạo với văn bản tham chiếu. Ví dụ: giả sử bạn đang cố gắng xác định mức độ hiệu quả của một mô hình học máy trong việc dịch từ tiếng Pháp sang tiếng Hà Lan. Trong trường hợp này:

  • Văn bản được tạo là bản dịch tiếng Hà Lan mà mô hình học máy trả về.
  • Văn bản đối chiếu là bản dịch tiếng Hà Lan do một người dịch (hoặc phần mềm) tạo.

Xin lưu ý rằng một số chiến lược đánh giá không liên quan đến văn bản tham chiếu.

AI tạo sinh

#language
#image
#generativeAI

Một lĩnh vực chuyển đổi mới nổi không có định nghĩa chính thức. Tuy nhiên, hầu hết các chuyên gia đều đồng ý rằng các mô hình AI tạo sinh có thể tạo ("tạo") nội dung đáp ứng tất cả các yêu cầu sau:

  • phức tạp
  • nhất quán
  • gốc

Ví dụ: mô hình AI tạo sinh có thể tạo các bài tiểu luận hoặc hình ảnh phức tạp.

Một số công nghệ trước đây, bao gồm cả LSTMRNN, cũng có thể tạo nội dung nguyên gốc và nhất quán. Một số chuyên gia xem những công nghệ trước đây này là AI tạo sinh, trong khi những người khác lại cho rằng AI tạo sinh thực sự đòi hỏi đầu ra phức tạp hơn so với những công nghệ trước đó có thể tạo ra.

Trái ngược với máy học dự đoán.

câu trả lời vàng

#language
#generativeAI

Một câu trả lời được biết là chính xác. Ví dụ: với lời nhắc sau:

2 + 2

Phản hồi vàng hy vọng sẽ là:

4

Cao

đánh giá thủ công

#language
#generativeAI

Một quy trình mà con người đánh giá chất lượng của kết quả của một mô hình học máy; ví dụ: nhờ những người nói hai thứ tiếng đánh giá chất lượng của một mô hình dịch bằng học máy. Việc đánh giá thủ công đặc biệt hữu ích khi đánh giá các mô hình không có câu trả lời đúng.

Khác với quy trình đánh giá tự độngquy trình đánh giá bằng trình tự động đánh giá.

con người trong vòng lặp (HITL)

#generativeAI

Một thành ngữ được xác định không rõ ràng có thể có nghĩa là một trong những điều sau:

  • Chính sách xem xét kết quả của AI tạo sinh một cách phê phán hoặc hoài nghi. Ví dụ: những người viết Bảng thuật ngữ về học máy này rất ngạc nhiên về những gì mô hình ngôn ngữ lớn có thể làm được, nhưng cũng lưu ý đến những lỗi mà mô hình ngôn ngữ lớn mắc phải.
  • Một chiến lược hoặc hệ thống giúp đảm bảo rằng mọi người sẽ góp phần định hình, đánh giá và tinh chỉnh hành vi của mô hình. Việc giữ cho con người luôn nắm bắt thông tin giúp AI tận dụng được cả trí tuệ máy và trí tuệ con người. Ví dụ: một hệ thống trong đó AI tạo mã mà sau đó kỹ sư phần mềm xem xét là một hệ thống có con người tham gia.

I

học tập theo bối cảnh

#language
#generativeAI

Từ đồng nghĩa với câu lệnh dựa trên một vài ví dụ.

điều chỉnh hướng dẫn

#generativeAI

Một hình thức điều chỉnh tinh vi giúp cải thiện khả năng làm theo hướng dẫn của mô hình AI tạo sinh. Điều chỉnh hướng dẫn liên quan đến việc huấn luyện mô hình trên một loạt lời nhắc hướng dẫn, thường bao gồm nhiều tác vụ. Sau đó, mô hình được điều chỉnh theo hướng dẫn sẽ có xu hướng tạo ra các câu trả lời hữu ích cho lời nhắc không có ví dụ trên nhiều nhiệm vụ.

So sánh và đối chiếu với:

L

LLM

#language
#generativeAI

Từ viết tắt của mô hình ngôn ngữ lớn.

Đánh giá LLM (evals)

#language
#generativeAI

Một bộ chỉ số và điểm chuẩn để đánh giá hiệu suất của mô hình ngôn ngữ lớn (LLM). Nói chung, các hoạt động đánh giá LLM:

  • Giúp các nhà nghiên cứu xác định những khía cạnh cần cải thiện đối với LLM.
  • Hữu ích trong việc so sánh các LLM khác nhau và xác định LLM tốt nhất cho một tác vụ cụ thể.
  • Giúp đảm bảo rằng LLM được sử dụng một cách an toàn và hợp lý.

LoRA

#language
#generativeAI

Viết tắt của Khả năng thích ứng cấp thấp.

Khả năng thích ứng cấp thấp (LoRA)

#language
#generativeAI

Một kỹ thuật tiết kiệm tham số để điều chỉnh tinh vi, giúp "đóng băng" các trọng số được huấn luyện trước của mô hình (như vậy, các trọng số này không thể sửa đổi được nữa) rồi chèn một tập hợp nhỏ các trọng số có thể huấn luyện vào mô hình. Tập hợp các trọng số có thể huấn luyện này (còn gọi là "matrices cập nhật") nhỏ hơn đáng kể so với mô hình cơ sở và do đó, việc huấn luyện sẽ nhanh hơn nhiều.

LoRA mang lại các lợi ích sau:

  • Cải thiện chất lượng dự đoán của mô hình cho miền áp dụng tính năng tinh chỉnh.
  • Điều chỉnh chi tiết nhanh hơn so với các kỹ thuật yêu cầu điều chỉnh chi tiết tất cả tham số của mô hình.
  • Giảm chi phí tính toán của hoạt động xác suất bằng cách cho phép phân phát đồng thời nhiều mô hình chuyên biệt có cùng một mô hình cơ sở.

M

bản dịch máy

#generativeAI

Sử dụng phần mềm (thường là mô hình học máy) để chuyển đổi văn bản từ ngôn ngữ này sang ngôn ngữ khác, ví dụ: từ tiếng Anh sang tiếng Nhật.

độ chính xác trung bình tại k (mAP@k)

#language
#generativeAI

Giá trị trung bình thống kê của tất cả điểm số độ chính xác trung bình tại k trên một tập dữ liệu xác thực. Một cách sử dụng độ chính xác trung bình tại k là để đánh giá chất lượng của các đề xuất do hệ thống đề xuất tạo ra.

Mặc dù cụm từ "trung bình trung bình" nghe có vẻ thừa thãi, nhưng tên của chỉ số này là phù hợp. Xét cho cùng, chỉ số này tìm giá trị trung bình của nhiều giá trị độ chính xác trung bình tại k.

sự kết hợp của các chuyên gia

#language
#generativeAI

Một lược đồ để tăng hiệu quả của mạng nơron bằng cách chỉ sử dụng một tập hợp con tham số (được gọi là chuyên gia) để xử lý một mã thông báo đầu vào nhất định hoặc ví dụ. Mạng lọc sẽ định tuyến từng mã thông báo đầu vào hoặc ví dụ đến(các) chuyên gia thích hợp.

Để biết thông tin chi tiết, hãy xem một trong các bài viết sau:

MMIT

#language
#image
#generativeAI

Viết tắt của được điều chỉnh theo hướng dẫn đa phương thức.

mô hình xếp chồng

#generativeAI

Một hệ thống chọn mô hình lý tưởng cho một truy vấn suy luận cụ thể.

Hãy tưởng tượng một nhóm mô hình, từ rất lớn (có nhiều thông số) đến nhỏ hơn nhiều (có ít thông số hơn). Các mô hình rất lớn tiêu tốn nhiều tài nguyên tính toán hơn tại thời điểm dự đoán so với các mô hình nhỏ hơn. Tuy nhiên, các mô hình rất lớn thường có thể suy luận các yêu cầu phức tạp hơn so với các mô hình nhỏ hơn. Mô hình xếp tầng xác định độ phức tạp của truy vấn suy luận, sau đó chọn mô hình thích hợp để thực hiện suy luận. Động lực chính của việc xếp tầng mô hình là giảm chi phí suy luận bằng cách thường xuyên chọn các mô hình nhỏ hơn và chỉ chọn mô hình lớn hơn cho các truy vấn phức tạp hơn.

Hãy tưởng tượng một mô hình nhỏ chạy trên điện thoại và phiên bản lớn hơn của mô hình đó chạy trên máy chủ từ xa. Việc phân cấp mô hình hiệu quả sẽ làm giảm chi phí và độ trễ bằng cách cho phép mô hình nhỏ hơn xử lý các yêu cầu đơn giản và chỉ gọi mô hình từ xa để xử lý các yêu cầu phức tạp.

Xem thêm trình định tuyến mô hình.

bộ định tuyến mô hình

#generativeAI

Thuật toán xác định mô hình lý tưởng để xác định trong mô hình xếp tầng. Trình định tuyến mô hình thường là một mô hình học máy, mô hình này dần dần học cách chọn mô hình tốt nhất cho một dữ liệu đầu vào nhất định. Tuy nhiên, đôi khi bộ định tuyến mô hình có thể là một thuật toán không phải học máy, đơn giản hơn.

MOE

#language
#image
#generativeAI

Viết tắt của nhóm chuyên gia.

MT

#generativeAI

Từ viết tắt của bản dịch máy.

Không

không có câu trả lời đúng (NORA)

#language
#generativeAI

Một lời nhắc có nhiều câu trả lời phù hợp. Ví dụ: câu lệnh sau đây không có câu trả lời đúng:

Kể cho tôi nghe một chuyện cười về voi.

Việc đánh giá câu lệnh không có câu trả lời đúng có thể là một thách thức.

NORA

#language
#generativeAI

Viết tắt của không có câu trả lời đúng.

O

câu lệnh một lần

#language
#generativeAI

Một câu lệnh chứa một ví dụ minh hoạ cách mô hình ngôn ngữ lớn phản hồi. Ví dụ: câu lệnh sau đây chứa một ví dụ cho thấy cách một mô hình ngôn ngữ lớn trả lời truy vấn.

Các phần của một câu lệnh Ghi chú
Đơn vị tiền tệ chính thức của quốc gia đã chỉ định là gì? Câu hỏi mà bạn muốn LLM trả lời.
Pháp: EUR Một ví dụ.
Ấn Độ: Cụm từ tìm kiếm thực tế.

So sánh và đối chiếu lệnh nhắc một lần với các thuật ngữ sau:

Điểm

điều chỉnh hiệu quả theo tham số

#language
#generativeAI

Một bộ kỹ thuật để điều chỉnh tinh vi một mô hình ngôn ngữ được huấn luyện trước (PLM) lớn hiệu quả hơn so với việc điều chỉnh tinh vi toàn bộ. Việc điều chỉnh hiệu quả theo tham số thường tinh chỉnh ít tham số hơn so với việc tinh chỉnh đầy đủ, nhưng thường tạo ra một mô hình ngôn ngữ lớn hoạt động tốt (hoặc gần như tốt) như một mô hình ngôn ngữ lớn được tạo từ quá trình tinh chỉnh đầy đủ.

So sánh và đối chiếu việc điều chỉnh hiệu quả tham số với:

Điều chỉnh hiệu quả theo tham số còn được gọi là điều chỉnh tinh vi hiệu quả theo tham số.

PLM

#language
#generativeAI

Từ viết tắt của mô hình ngôn ngữ được huấn luyện trước.

mô hình sau khi huấn luyện

#language
#image
#generativeAI

Thuật ngữ được xác định không rõ ràng, thường đề cập đến một mô hình được huấn luyện trước đã trải qua một số quy trình xử lý sau, chẳng hạn như một hoặc nhiều quy trình sau:

mô hình được huấn luyện sẵn

#language
#image
#generativeAI

Thông thường, một mô hình đã được huấn luyện. Thuật ngữ này cũng có thể có nghĩa là một vectơ nhúng đã được huấn luyện trước đó.

Thuật ngữ mô hình ngôn ngữ được huấn luyện trước thường đề cập đến một mô hình ngôn ngữ lớn đã được huấn luyện.

huấn luyện trước

#language
#image
#generativeAI

Quá trình huấn luyện ban đầu của một mô hình trên một tập dữ liệu lớn. Một số mô hình được huấn luyện trước là những gã khổng lồ vụng về và thường phải được tinh chỉnh thông qua quá trình huấn luyện bổ sung. Ví dụ: các chuyên gia về học máy có thể huấn luyện trước một mô hình ngôn ngữ lớn trên một tập dữ liệu văn bản khổng lồ, chẳng hạn như tất cả các trang tiếng Anh trong Wikipedia. Sau khi huấn luyện trước, mô hình thu được có thể được tinh chỉnh thêm thông qua bất kỳ kỹ thuật nào sau đây:

lời nhắc

#language
#generativeAI

Mọi văn bản được nhập làm dữ liệu đầu vào cho một mô hình ngôn ngữ lớn để điều kiện hoá mô hình hoạt động theo một cách nhất định. Lời nhắc có thể ngắn như một cụm từ hoặc dài tuỳ ý (ví dụ: toàn bộ văn bản của một cuốn tiểu thuyết). Lời nhắc thuộc nhiều danh mục, bao gồm cả những lời nhắc trong bảng sau:

Danh mục câu lệnh Ví dụ: Ghi chú
Câu hỏi Một con chim bồ câu có thể bay nhanh đến mức nào?
Hướng dẫn Viết một bài thơ hài hước về hoạt động chênh lệch giá. Câu lệnh yêu cầu mô hình ngôn ngữ lớn làm một việc gì đó.
Ví dụ: Dịch mã Markdown sang HTML. Ví dụ:
Markdown: * mục danh sách
HTML: <ul> <li>mục danh sách</li> </ul>
Câu đầu tiên trong câu lệnh mẫu này là một hướng dẫn. Phần còn lại của câu lệnh là ví dụ.
Vai trò Giải thích lý do sử dụng phương pháp giảm độ dốc trong quá trình huấn luyện máy học cho một tiến sĩ Vật lý. Phần đầu tiên của câu là hướng dẫn; cụm từ "đến một tiến sĩ Vật lý" là phần vai trò.
Dữ liệu đầu vào một phần để mô hình hoàn tất Thủ tướng Vương quốc Anh sống tại Lời nhắc nhập một phần có thể kết thúc đột ngột (như ví dụ này) hoặc kết thúc bằng dấu gạch dưới.

Mô hình AI tạo sinh có thể phản hồi một câu lệnh bằng văn bản, mã, hình ảnh, nội dung nhúng, video… gần như mọi thứ.

học tập dựa trên câu lệnh

#language
#generativeAI

Một khả năng của một số mô hình nhất định cho phép các mô hình đó điều chỉnh hành vi để phản hồi hoạt động nhập văn bản tuỳ ý (lời nhắc). Trong mô hình học tập dựa trên câu lệnh thông thường, mô hình ngôn ngữ lớn sẽ phản hồi câu lệnh bằng cách tạo văn bản. Ví dụ: giả sử người dùng nhập lời nhắc sau:

Tóm tắt Định luật thứ ba của Newton về chuyển động.

Mô hình có khả năng học dựa trên câu lệnh không được huấn luyện cụ thể để trả lời câu lệnh trước đó. Thay vào đó, mô hình "biết" nhiều thông tin thực tế về vật lý, nhiều thông tin về các quy tắc ngôn ngữ chung và nhiều thông tin về những yếu tố tạo nên câu trả lời hữu ích nói chung. Kiến thức đó là đủ để cung cấp một câu trả lời (hy vọng là) hữu ích. Ý kiến phản hồi bổ sung của con người ("Câu trả lời đó quá phức tạp" hoặc "Phản ứng là gì?") cho phép một số hệ thống học dựa trên câu lệnh dần dần cải thiện tính hữu ích của câu trả lời.

thiết kế câu lệnh

#language
#generativeAI

Đồng nghĩa với thiết kế câu lệnh.

thiết kế câu lệnh

#language
#generativeAI

Nghệ thuật tạo lời nhắc để thu hút các câu trả lời mong muốn từ một mô hình ngôn ngữ lớn. Con người thực hiện kỹ thuật gợi ý. Việc viết câu lệnh có cấu trúc tốt là một phần thiết yếu để đảm bảo nhận được câu trả lời hữu ích từ mô hình ngôn ngữ lớn. Kỹ thuật lời nhắc phụ thuộc vào nhiều yếu tố, bao gồm:

Hãy xem bài viết Giới thiệu về thiết kế câu lệnh để biết thêm thông tin chi tiết về cách viết câu lệnh hữu ích.

Thiết kế câu lệnh đồng nghĩa với thiết kế câu lệnh.

điều chỉnh nhanh

#language
#generativeAI

Cơ chế điều chỉnh tham số hiệu quả giúp tìm hiểu "phần tiền tố" mà hệ thống thêm vào lời nhắc thực tế.

Một biến thể của tính năng điều chỉnh lời nhắc (đôi khi được gọi là điều chỉnh tiền tố) là đặt tiền tố ở mọi lớp. Ngược lại, hầu hết các tuỳ chọn điều chỉnh lời nhắc chỉ thêm một tiền tố vào lớp đầu vào.

Điểm

văn bản tham chiếu

#language
#generativeAI

Câu trả lời của chuyên gia cho một câu lệnh. Ví dụ: với câu lệnh sau:

Dịch câu hỏi "Bạn tên gì?" từ tiếng Anh sang tiếng Pháp.

Câu trả lời của chuyên gia có thể là:

Comment vous appelez-vous?

Nhiều chỉ số (chẳng hạn như ROUGE) đo lường mức độ phù hợp giữa văn bản tham chiếu với văn bản do mô hình học máy tạo.

Học tăng cường từ phản hồi của con người (RLHF)

#generativeAI
#rl

Sử dụng ý kiến phản hồi của nhân viên đánh giá để cải thiện chất lượng câu trả lời của mô hình. Ví dụ: cơ chế RLHF có thể yêu cầu người dùng đánh giá chất lượng phản hồi của một mô hình bằng biểu tượng cảm xúc 👍 hoặc 👎. Sau đó, hệ thống có thể điều chỉnh các phản hồi trong tương lai dựa trên ý kiến phản hồi đó.

lời nhắc về vai trò

#language
#generativeAI

Một phần không bắt buộc của câu lệnh giúp xác định đối tượng mục tiêu cho phản hồi của mô hình AI tạo sinh. Nếu không có câu lệnh về vai trò, mô hình ngôn ngữ lớn sẽ đưa ra câu trả lời có thể hữu ích hoặc không hữu ích cho người đặt câu hỏi. Với câu lệnh theo vai trò, mô hình ngôn ngữ lớn có thể trả lời theo cách phù hợp và hữu ích hơn cho một đối tượng mục tiêu cụ thể. Ví dụ: phần lời nhắc về vai trò của các lời nhắc sau đây được in đậm:

  • Tóm tắt bài viết này cho một tiến sĩ kinh tế.
  • Mô tả cách hoạt động của thủy triều cho trẻ 10 tuổi.
  • Giải thích về cuộc khủng hoảng tài chính năm 2008. Nói như khi bạn trò chuyện với một đứa trẻ hoặc một chú chó săn mồi.

S

điều chỉnh lời nhắc mềm

#language
#generativeAI

Một kỹ thuật để điều chỉnh mô hình ngôn ngữ lớn cho một tác vụ cụ thể mà không cần điều chỉnh tinh vi tốn nhiều tài nguyên. Thay vì huấn luyện lại tất cả trọng số trong mô hình, tính năng điều chỉnh lời nhắc mềm sẽ tự động điều chỉnh lời nhắc để đạt được cùng một mục tiêu.

Với một câu lệnh dạng văn bản, tính năng điều chỉnh câu lệnh mềm thường thêm các phần nhúng mã thông báo bổ sung vào câu lệnh và sử dụng tính năng hồi quy để tối ưu hoá dữ liệu đầu vào.

Lời nhắc "khó" chứa các mã thông báo thực tế thay vì mã thông báo nhúng.

T

nhiệt độ

#language
#image
#generativeAI

Thông số siêu dữ liệu kiểm soát mức độ ngẫu nhiên của đầu ra của mô hình. Nhiệt độ càng cao thì đầu ra càng ngẫu nhiên, còn nhiệt độ càng thấp thì đầu ra càng ít ngẫu nhiên.

Việc chọn nhiệt độ tốt nhất phụ thuộc vào ứng dụng cụ thể và các thuộc tính ưu tiên của đầu ra của mô hình. Ví dụ: bạn có thể tăng nhiệt độ khi tạo một ứng dụng tạo ra đầu ra mẫu quảng cáo. Ngược lại, bạn có thể giảm nhiệt độ khi xây dựng mô hình phân loại hình ảnh hoặc văn bản để cải thiện độ chính xác và tính nhất quán của mô hình.

Nhiệt độ thường được sử dụng với softmax.

Z

đặt câu lệnh dựa trên không có ví dụ

#language
#generativeAI

Lệnh gọi không cung cấp ví dụ về cách bạn muốn mô hình ngôn ngữ lớn phản hồi. Ví dụ:

Các phần của một câu lệnh Ghi chú
Đơn vị tiền tệ chính thức của quốc gia đã chỉ định là gì? Câu hỏi mà bạn muốn LLM trả lời.
Ấn Độ: Cụm từ tìm kiếm thực tế.

Mô hình ngôn ngữ lớn có thể trả lời bằng bất kỳ nội dung nào sau đây:

  • Rupee
  • INR
  • Đồng rupi Ấn Độ
  • Rupee
  • Đồng rupi Ấn Độ

Tất cả các câu trả lời đều đúng, mặc dù bạn có thể muốn một định dạng cụ thể.

So sánh và đối chiếu lệnh nhắc không có ví dụ với các thuật ngữ sau: