หน้านี้มีคำศัพท์ในอภิธานศัพท์ของ Generative AI ดูคำศัพท์ทั้งหมดในอภิธานศัพท์ได้โดยการคลิกที่นี่
A
การประเมินอัตโนมัติ
การใช้ซอฟต์แวร์เพื่อตัดสินคุณภาพของเอาต์พุตของโมเดล
เมื่อเอาต์พุตของโมเดลค่อนข้างตรงไปตรงมา สคริปต์หรือโปรแกรมจะเปรียบเทียบเอาต์พุตของโมเดลกับคำตอบที่ถูกต้องได้ บางครั้งเราเรียกการประเมินอัตโนมัติประเภทนี้ว่าการประเมินแบบเป็นโปรแกรม เมตริก เช่น ROUGE หรือBLEU มักมีประโยชน์สําหรับการประเมินแบบเป็นโปรแกรม
เมื่อเอาต์พุตของโมเดลมีความซับซ้อนหรือมีคำตอบที่ถูกต้องเพียงคำตอบเดียว บางครั้งโปรแกรม ML แยกต่างหากที่เรียกว่าโปรแกรมประเมินอัตโนมัติจะดำเนินการประเมินโดยอัตโนมัติ
ตรงข้ามกับการประเมินโดยเจ้าหน้าที่
การประเมินโดยโปรแกรมอัตโนมัติ
กลไกแบบผสมผสานสำหรับตัดสินคุณภาพของเอาต์พุตจากโมเดล Generative AI ซึ่งรวมการประเมินโดยเจ้าหน้าที่เข้ากับการประเมินอัตโนมัติ โปรแกรมให้คะแนนอัตโนมัติคือโมเดล ML ที่ฝึกด้วยข้อมูลที่สร้างขึ้นจากการประเมินโดยมนุษย์ ในทางทฤษฎีแล้ว โปรแกรมประเมินอัตโนมัติจะเรียนรู้ที่จะเลียนแบบผู้ประเมินที่เป็นมนุษย์เครื่องมือประเมินอัตโนมัติที่สร้างไว้ล่วงหน้ามีให้ใช้งาน แต่เครื่องมือประเมินอัตโนมัติที่ดีที่สุดคือเครื่องมือที่ปรับแต่งมาเพื่องานที่คุณประเมินโดยเฉพาะ
โมเดลอนุกรมเวลาแบบเลื่อนไปข้างหน้า
โมเดลที่อนุมานการคาดการณ์ตามการคาดการณ์ก่อนหน้าของตนเอง ตัวอย่างเช่น โมเดลภาษาแบบย้อนกลับอัตโนมัติจะคาดการณ์โทเค็นถัดไปโดยอิงตามโทเค็นที่คาดการณ์ไว้ก่อนหน้านี้ โมเดลภาษาขนาดใหญ่ทั้งหมดที่อิงตาม Transformer จะเป็นแบบย้อนกลับอัตโนมัติ
ในทางตรงกันข้าม โมเดลรูปภาพที่อิงตาม GAN มักจะไม่แสดงการถดถอยอัตโนมัติเนื่องจากสร้างรูปภาพในขั้นตอนเดียวแบบไปข้างหน้า ไม่ใช่แบบซ้ำๆ ในขั้นตอน อย่างไรก็ตาม โมเดลการสร้างรูปภาพบางรุ่นเป็นแบบถดถอยอัตโนมัติเนื่องจากสร้างรูปภาพเป็นขั้นตอน
C
การช่วยสร้างลำดับความคิด
เทคนิคการสร้างพรอมต์ที่กระตุ้นโมเดลภาษาขนาดใหญ่ (LLM) ให้อธิบายเหตุผลทีละขั้นตอน ตัวอย่างเช่น ลองดูพรอมต์ต่อไปนี้ โดยให้ความสนใจเป็นพิเศษกับประโยคที่ 2
ผู้ขับขี่จะรู้สึกถึงแรง g เท่าใดในรถที่เร่งจาก 0 เป็น 60 ไมล์ต่อชั่วโมงใน 7 วินาที แสดงการคํานวณที่เกี่ยวข้องทั้งหมดในคําตอบ
คำตอบของ LLM มีแนวโน้มที่จะมีลักษณะดังนี้
- แสดงลำดับสูตรฟิสิกส์ โดยใส่ค่า 0, 60 และ 7 ในตำแหน่งที่เหมาะสม
- อธิบายเหตุผลที่เลือกสูตรเหล่านั้น และความหมายของตัวแปรต่างๆ
การแจ้งเตือนแบบเชื่อมโยงความคิดจะบังคับให้ LLM ทำการคํานวณทั้งหมด ซึ่งอาจทําให้ได้คําตอบที่ถูกต้องมากขึ้น นอกจากนี้ ข้อความแจ้งแบบเป็นลำดับความคิดยังช่วยให้ผู้ใช้ตรวจสอบขั้นตอนของ LLM เพื่อพิจารณาว่าคำตอบนั้นสมเหตุสมผลหรือไม่
แชท
เนื้อหาของบทสนทนาแบบโต้ตอบกับระบบ ML ซึ่งโดยทั่วไปแล้วจะเป็นโมเดลภาษาขนาดใหญ่ การโต้ตอบก่อนหน้านี้ในแชท (สิ่งที่คุณพิมพ์และวิธีที่โมเดลภาษาขนาดใหญ่ตอบกลับ) จะกลายเป็นบริบทสําหรับส่วนถัดไปของแชท
แชทบ็อตคือแอปพลิเคชันของโมเดลภาษาขนาดใหญ่
การฝังภาษาตามบริบท
การฝังที่ใกล้เคียงกับ "การทำความเข้าใจ" คำและวลีในลักษณะที่มนุษย์เจ้าของภาษาเข้าใจ ข้อมูลเชิงลึกของภาษาตามบริบทจะเข้าใจไวยากรณ์ ความหมาย และบริบทที่ซับซ้อน
เช่น ลองพิจารณาการฝังคําภาษาอังกฤษว่า cow รูปแบบการฝังข้อมูลรุ่นเก่า เช่น word2vec สามารถแสดงคำภาษาอังกฤษได้ เช่น ระยะทางในพื้นที่การฝังข้อมูลจากวัวถึงวัวกระทิงจะคล้ายกับระยะทางจากแม่แพะ (แพะตัวเมีย) ถึงแพะตัวผู้ หรือจากหญิงถึงชาย การป้อนข้อมูลภาษาตามบริบทสามารถดำเนินการต่อได้โดยตระหนักว่าบางครั้งผู้พูดภาษาอังกฤษใช้คำว่า cow ในความหมายว่าวัวหรือวัวตัวผู้ก็ได้
กรอบเวลาบริบท
จำนวนโทเค็นที่โมเดลประมวลผลได้ในพรอมต์หนึ่งๆ ยิ่งหน้าต่างบริบทมีขนาดใหญ่เท่าใด โมเดลก็จะใช้ข้อมูลได้มากขึ้นเพื่อตอบกลับพรอมต์อย่างสอดคล้องกันและสมเหตุสมผล
D
การแจ้งเตือนโดยตรง
คำพ้องความหมายของพรอมต์แบบไม่ใช้ตัวอย่าง
การกลั่น
กระบวนการลดขนาดโมเดล 1 รายการ (เรียกว่าโมเดลหลัก) ให้เป็นโมเดลที่เล็กลง (เรียกว่าโมเดลย่อย) ซึ่งจําลองการคาดการณ์ของโมเดลเดิมให้ใกล้เคียงที่สุด การกลั่นมีประโยชน์เนื่องจากโมเดลขนาดเล็กมีข้อดีหลัก 2 ข้อเหนือกว่าโมเดลขนาดใหญ่ (ครู) ดังนี้
- ใช้เวลาในการอนุมานเร็วขึ้น
- ลดการใช้หน่วยความจำและพลังงาน
อย่างไรก็ตาม โดยทั่วไปการคาดการณ์ของนักเรียนจะไม่แม่นยำเท่ากับการคาดการณ์ของครู
การกลั่นจะฝึกโมเดลนักเรียนเพื่อลดฟังก์ชันการสูญเสียตามความแตกต่างระหว่างเอาต์พุตของการคาดการณ์ของโมเดลนักเรียนและโมเดลครู
เปรียบเทียบและเปรียบต่างระหว่างการกลั่นกับคำศัพท์ต่อไปนี้
ดูข้อมูลเพิ่มเติมได้ที่LLM: การปรับแต่ง การปรับให้เหมาะสม และการปรับแต่งพรอมต์ในหลักสูตรเร่งรัดเกี่ยวกับแมชชีนเลิร์นนิง
E
evals
ใช้เป็นหลักเป็นตัวย่อของการประเมิน LLM evals ย่อมาจากการประเมินในรูปแบบต่างๆ
การประเมิน
กระบวนการวัดคุณภาพของรูปแบบหรือการเปรียบเทียบรูปแบบต่างๆ
หากต้องการประเมินโมเดลแมชชีนเลิร์นนิงที่มีการควบคุมดูแล โดยทั่วไปคุณจะต้องประเมินโมเดลนั้นเทียบกับชุดการตรวจสอบและชุดทดสอบ การประเมิน LLMมักเกี่ยวข้องกับการประเมินคุณภาพและความปลอดภัยในวงกว้าง
F
ข้อเท็จจริง
ในแวดวง ML พร็อพเพอร์ตี้ที่อธิบายโมเดลซึ่งเอาต์พุตอิงตามความเป็นจริง ความเป็นข้อเท็จจริงเป็นแนวคิด ไม่ใช่เมตริก ตัวอย่างเช่น สมมติว่าคุณส่งพรอมต์ต่อไปนี้ไปยังโมเดลภาษาขนาดใหญ่
สูตรเคมีของเกลือแกงคืออะไร
โมเดลที่เพิ่มประสิทธิภาพความถูกต้องจะตอบกลับดังนี้
NaCl
เราอาจจําเป็นต้องสมมติว่าโมเดลทั้งหมดควรอิงตามข้อเท็จจริง อย่างไรก็ตาม พรอมต์บางรายการ เช่น พรอมต์ต่อไปนี้ ควรทําให้โมเดล Generative AI เพิ่มประสิทธิภาพความคิดสร้างสรรค์แทนความถูกต้อง
เล่ากลอนสั้นๆ เกี่ยวกับนักบินอวกาศและหนอนผีเสื้อให้ฟังหน่อย
กลอนสั้นๆ ที่ออกมาจึงไม่น่าอิงตามความเป็นจริง
ตรงข้ามกับการยึดมั่นในความเป็นจริง
Few-Shot Prompting
พรอมต์ที่มีตัวอย่างมากกว่า 1 รายการ ("2-3" รายการ) ซึ่งแสดงวิธีที่โมเดลภาษาขนาดใหญ่ควรตอบ ตัวอย่างเช่น พรอมต์แบบยาวต่อไปนี้มีตัวอย่าง 2 รายการที่แสดงวิธีตอบคำถามของโมเดลภาษาขนาดใหญ่
ส่วนต่างๆ ของพรอมต์ 1 รายการ | หมายเหตุ |
---|---|
สกุลเงินทางการของประเทศที่ระบุคืออะไร | คำถามที่คุณต้องการให้ LLM ตอบ |
ฝรั่งเศส: EUR | ตัวอย่างหนึ่ง |
สหราชอาณาจักร: GBP | อีกตัวอย่างหนึ่ง |
อินเดีย: | คําค้นหาจริง |
โดยทั่วไปแล้วพรอมต์แบบไม่กี่ช็อตจะให้ผลลัพธ์ที่ต้องการมากกว่าพรอมต์แบบไม่มีตัวอย่างและพรอมต์แบบตัวอย่างเดียว แต่การพรอมต์แบบไม่กี่คำต้องใช้พรอมต์ที่ยาวกว่า
พรอมต์แบบไม่กี่คำเป็นรูปแบบการเรียนรู้แบบไม่กี่คำที่ใช้กับการเรียนรู้ตามพรอมต์
ดูข้อมูลเพิ่มเติมได้ที่การวิศวกรรมพรอมต์ในหลักสูตรเร่งรัดเกี่ยวกับแมชชีนเลิร์นนิง
การปรับแต่ง
การฝึกครั้งที่ 2 สำหรับงานเฉพาะที่ดำเนินการกับโมเดลที่ฝึกล่วงหน้าเพื่อปรับแต่งพารามิเตอร์สำหรับกรณีการใช้งานที่เฉพาะเจาะจง ตัวอย่างเช่น ลำดับการฝึกแบบเต็มสำหรับโมเดลภาษาขนาดใหญ่บางรายการมีดังนี้
- การฝึกล่วงหน้า: ฝึกโมเดลภาษาขนาดใหญ่ด้วยชุดข้อมูลทั่วไปขนาดใหญ่ เช่น หน้า Wikipedia ภาษาอังกฤษทั้งหมด
- การปรับแต่ง: ฝึกโมเดลที่ฝึกไว้ล่วงหน้าให้ทํางานที่เฉพาะเจาะจง เช่น การตอบคําถามทางการแพทย์ โดยปกติการปรับแต่งแบบละเอียดจะเกี่ยวข้องกับตัวอย่างหลายร้อยหรือหลายพันรายการที่มุ่งเน้นไปที่งานหนึ่งๆ
อีกตัวอย่างหนึ่งคือลําดับการฝึกแบบเต็มสําหรับโมเดลรูปภาพขนาดใหญ่มีดังนี้
- การฝึกล่วงหน้า: ฝึกโมเดลรูปภาพขนาดใหญ่ในชุดข้อมูลรูปภาพทั่วไปขนาดใหญ่ เช่น รูปภาพทั้งหมดใน Wikimedia Commons
- การปรับแต่ง: ฝึกโมเดลที่ฝึกไว้ล่วงหน้าให้ทํางานเฉพาะ เช่น สร้างรูปภาพโลมาน้ำจืด
การปรับแต่งอาจใช้กลยุทธ์ต่อไปนี้ร่วมกัน
- การแก้ไขพารามิเตอร์ที่มีอยู่ทั้งหมดของโมเดลที่ผ่านการฝึกอบรมไว้ล่วงหน้า บางครั้งเรียกว่าการปรับแต่งอย่างละเอียด
- การแก้ไขพารามิเตอร์ที่มีอยู่บางส่วนของโมเดลที่ผ่านการฝึกอบรมล่วงหน้า (โดยปกติแล้วคือชั้นที่อยู่ใกล้กับชั้นเอาต์พุตมากที่สุด) โดยไม่เปลี่ยนแปลงพารามิเตอร์อื่นๆ ที่มีอยู่ (โดยปกติแล้วคือชั้นที่อยู่ใกล้กับชั้นอินพุตมากที่สุด) ดูการปรับแต่งที่มีประสิทธิภาพในแง่พารามิเตอร์
- การเพิ่มเลเยอร์ โดยปกติจะวางไว้บนเลเยอร์ที่มีอยู่ซึ่งอยู่ใกล้กับเลเยอร์เอาต์พุตมากที่สุด
การปรับแต่งเป็นรูปแบบหนึ่งของการเรียนรู้แบบโอน ดังนั้นการปรับแต่งอาจใช้ฟังก์ชันการสูญเสียหรือโมเดลประเภทอื่นที่แตกต่างจากที่ใช้ฝึกโมเดลที่ผ่านการฝึกอบรมล่วงหน้า เช่น คุณอาจปรับแต่งโมเดลรูปภาพขนาดใหญ่ที่ฝึกไว้ล่วงหน้าเพื่อสร้างโมเดลการหาค่าประมาณที่จะแสดงจํานวนนกในรูปภาพอินพุต
เปรียบเทียบการปรับแต่งกับคําต่อไปนี้
ดูข้อมูลเพิ่มเติมได้ที่การปรับแต่งในหลักสูตรเร่งรัดเกี่ยวกับแมชชีนเลิร์นนิง
เศษส่วนของความสําเร็จ
เมตริกสําหรับประเมินข้อความที่สร้างขึ้นของโมเดล ML ส่วนที่เป็นความสำเร็จคือจํานวนเอาต์พุตข้อความที่ "สําเร็จ" หารด้วยจํานวนเอาต์พุตข้อความทั้งหมดที่สร้างขึ้น ตัวอย่างเช่น หากโมเดลภาษาขนาดใหญ่สร้างโค้ด 10 บล็อก โดย 5 บล็อกทำงานสำเร็จ เศษส่วนของความสําเร็จจะเท่ากับ 50%
แม้ว่าเศษส่วนของความสําเร็จจะมีประโยชน์อย่างกว้างๆ ในสถิติ แต่ภายใน ML เมตริกนี้มีประโยชน์สําหรับการวัดงานที่ตรวจสอบได้เป็นหลัก เช่น การสร้างโค้ดหรือโจทย์คณิตศาสตร์
G
Gemini
ระบบนิเวศที่ประกอบด้วย AI ที่ล้ำหน้าที่สุดของ Google องค์ประกอบของระบบนิเวศนี้ได้แก่
- โมเดล Gemini ต่างๆ
- อินเทอร์เฟซการสนทนาแบบอินเทอร์แอกทีฟกับโมเดล Gemini ผู้ใช้พิมพ์พรอมต์และ Gemini จะตอบกลับพรอมต์เหล่านั้น
- Gemini API ต่างๆ
- ผลิตภัณฑ์ทางธุรกิจต่างๆ ที่อิงตามโมเดล Gemini เช่น Gemini สำหรับ Google Cloud
รูปแบบของ Gemini
โมเดลมัลติโมดที่อิงตาม Transformer ที่ทันสมัยของ Google โมเดล Gemini ได้รับการออกแบบมาโดยเฉพาะเพื่อผสานรวมกับตัวแทน
ผู้ใช้โต้ตอบกับโมเดล Gemini ได้หลายวิธี เช่น ผ่านอินเทอร์เฟซการสนทนาแบบอินเทอร์แอกทีฟและผ่าน SDK
ข้อความที่สร้างขึ้น
โดยทั่วไปคือข้อความที่โมเดล ML แสดงผล เมื่อประเมินโมเดลภาษาขนาดใหญ่ เมตริกบางรายการจะเปรียบเทียบข้อความที่สร้างขึ้นกับข้อความอ้างอิง ตัวอย่างเช่น สมมติว่าคุณพยายามประเมินประสิทธิภาพการแปลจากภาษาฝรั่งเศสเป็นภาษาดัตช์ของโมเดล ML ในกรณีนี้
- ข้อความที่สร้างขึ้นคือคำแปลภาษาดัตช์ที่โมเดล ML แสดงผล
- ข้อความอ้างอิงคือคำแปลภาษาดัตช์ที่นักแปล (หรือซอฟต์แวร์) สร้างขึ้น
โปรดทราบว่ากลยุทธ์การประเมินบางกลยุทธ์ไม่มีข้อความอ้างอิง
Generative AI
ช่องการเปลี่ยนแปลงที่เกิดขึ้นใหม่ซึ่งไม่มีคำจำกัดความอย่างเป็นทางการ อย่างไรก็ตาม ผู้เชี่ยวชาญส่วนใหญ่ยอมรับว่าโมเดล Generative AI สามารถสร้าง ("สร้าง") เนื้อหาที่มีลักษณะต่อไปนี้ได้ทั้งหมด
- ซับซ้อน
- สอดคล้องกัน
- เดิม
เช่น โมเดล Generative AI สามารถสร้างเรียงความหรือรูปภาพที่ซับซ้อน
เทคโนโลยีรุ่นก่อนหน้าบางรายการ เช่น LSTM และ RNN สามารถสร้างเนื้อหาต้นฉบับที่สอดคล้องกันได้ด้วย ผู้เชี่ยวชาญบางรายมองว่าเทคโนโลยียุคแรกๆ เหล่านี้เป็น Generative AI ขณะที่ผู้เชี่ยวชาญอีกกลุ่มหนึ่งเชื่อว่า Generative AI ที่แท้จริงต้องใช้เอาต์พุตที่ซับซ้อนกว่าที่เทคโนโลยียุคแรกๆ เหล่านั้นจะผลิตได้
ตรงข้ามกับ ML เชิงคาดการณ์
คำตอบที่ยอดเยี่ยม
คำตอบที่ทราบว่าดี ตัวอย่างเช่น เมื่อมีพรอมต์ต่อไปนี้
2 + 2
คำตอบที่สมบูรณ์แบบควรมีลักษณะดังนี้
4
H
การประเมินโดยเจ้าหน้าที่
กระบวนการที่ผู้คนตัดสินคุณภาพของเอาต์พุตของโมเดล ML เช่น การให้ผู้ที่พูดได้ 2 ภาษาตัดสินคุณภาพของโมเดลการแปลด้วย ML การประเมินโดยเจ้าหน้าที่มีประโยชน์อย่างยิ่งในการพิจารณาโมเดลที่มีคำตอบที่ถูกต้องเพียงคำตอบเดียว
ตรงข้ามกับการประเมินอัตโนมัติ และการประเมินโดยเครื่องมือประเมินอัตโนมัติ
มนุษย์ในวงรอบ (HITL)
สำนวนที่มีคำจำกัดความแบบหลวมๆ ซึ่งอาจหมายถึงอย่างใดอย่างหนึ่งต่อไปนี้
- นโยบายในการมองหาข้อบกพร่องหรือข้อสงสัยเกี่ยวกับเอาต์พุต Generative AI ตัวอย่างเช่น มนุษย์ที่เขียนอภิธานศัพท์ ML นี้ต่างทึ่งกับสิ่งที่โมเดลภาษาขนาดใหญ่ทําได้ แต่ก็ตระหนักถึงข้อผิดพลาดที่โมเดลภาษาขนาดใหญ่ทํา
- กลยุทธ์หรือระบบที่ช่วยให้ผู้ใช้ช่วยกำหนด ประเมิน และปรับแต่งลักษณะการทํางานของโมเดล การทำให้มนุษย์ทราบข้อมูลอยู่เสมอจะช่วยให้ AI ได้รับประโยชน์จากทั้งปัญญาประดิษฐ์และปัญญาของมนุษย์ ตัวอย่างเช่น ระบบที่ AI สร้างขึ้นโค้ดซึ่งวิศวกรซอฟต์แวร์จะตรวจสอบเป็นระบบที่มีมนุษย์เข้ามาเกี่ยวข้อง
I
การเรียนรู้ในบริบท
คำพ้องความหมายของ Few-Shot Prompting
การปรับแต่งวิธีการ
รูปแบบการปรับแต่งแบบละเอียดที่ช่วยปรับปรุงความสามารถของโมเดล Generative AI ในการทําตามคําสั่ง การปรับแต่งคำสั่งเกี่ยวข้องกับการฝึกโมเดลด้วยชุดพรอมต์คำสั่ง ซึ่งมักจะครอบคลุมงานต่างๆ มากมาย โมเดลที่ปรับตามคำสั่งที่ได้จึงมีแนวโน้มที่จะสร้างคำตอบที่เป็นประโยชน์สำหรับพรอมต์แบบไม่ใช้ตัวอย่างในงานต่างๆ
เปรียบเทียบและเปรียบเทียบกับ
L
LLM
ตัวย่อของโมเดลภาษาขนาดใหญ่
การประเมิน LLM (evals)
ชุดเมตริกและการเปรียบเทียบเพื่อประเมินประสิทธิภาพของโมเดลภาษาขนาดใหญ่ (LLM) การประเมิน LLM ในระดับสูงมีดังนี้
- ช่วยให้นักวิจัยระบุด้านที่ LLM จำเป็นต้องปรับปรุง
- มีประโยชน์ในการเปรียบเทียบ LLM ต่างๆ และระบุ LLM ที่ดีที่สุดสําหรับงานหนึ่งๆ
- ช่วยให้มั่นใจว่า LLM นั้นปลอดภัยและใช้งานได้อย่างมีจริยธรรม
LoRA
ตัวย่อของ Low-Rank Adaptability
Low-Rank Adaptability (LoRA)
เทคนิคการใช้พารามิเตอร์อย่างมีประสิทธิภาพสําหรับการปรับแต่งแบบละเอียดที่จะ "ตรึง" น้ำหนักที่ผ่านการฝึกล่วงหน้าของโมเดล (เพื่อไม่ให้แก้ไขได้อีก) จากนั้นแทรกชุดน้ำหนักขนาดเล็กที่ฝึกได้ลงในโมเดล ชุดน้ำหนักที่ฝึกได้นี้ (หรือที่เรียกว่า "เมทริกซ์การอัปเดต") มีขนาดน้อยกว่าโมเดลฐานมาก จึงฝึกได้เร็วกว่ามาก
LoRA มีข้อดีดังต่อไปนี้
- ปรับปรุงคุณภาพการคาดการณ์ของโมเดลสําหรับโดเมนที่มีการปรับแต่ง
- ปรับแต่งได้เร็วกว่าเทคนิคที่ต้องปรับแต่งพารามิเตอร์ทั้งหมดของโมเดล
- ลดต้นทุนการประมวลผลของการอนุมานด้วยการเปิดใช้การเรียกใช้โมเดลเฉพาะหลายรายการพร้อมกันซึ่งใช้โมเดลพื้นฐานเดียวกัน
M
การแปลด้วยคอมพิวเตอร์
การใช้ซอฟต์แวร์ (โดยทั่วไปคือโมเดลแมชชีนเลิร์นนิง) เพื่อแปลงข้อความจากภาษาหนึ่งไปเป็นอีกภาษาหนึ่ง เช่น จากอังกฤษเป็นญี่ปุ่น
ความแม่นยำเฉลี่ยของค่าเฉลี่ยที่ k (mAP@k)
ค่าเฉลี่ยทางสถิติของคะแนนความแม่นยำเฉลี่ยที่ k ทั้งหมดในชุดข้อมูลที่ใช้ตรวจสอบ การใช้ความแม่นยำเฉลี่ยที่ k อย่างหนึ่งคือเพื่อตัดสินคุณภาพของคําแนะนําที่ระบบคําแนะนําสร้างขึ้น
แม้ว่าวลี "ค่าเฉลี่ยถ่วงน้ำหนัก" จะฟังดูซ้ำซ้อน แต่ชื่อเมตริกก็เหมาะสม ท้ายที่สุดแล้ว เมตริกนี้จะหาค่ามัธยฐานของความแม่นยําเฉลี่ยที่ k หลายค่า
ผู้เชี่ยวชาญหลากหลายสาขา
รูปแบบที่เพิ่มประสิทธิภาพของเครือข่ายประสาทเทียมโดยใช้เฉพาะชุดย่อยของพารามิเตอร์ (เรียกว่าผู้เชี่ยวชาญ) เพื่อประมวลผลโทเค็นอินพุตหรือตัวอย่างที่ระบุ เครือข่ายการกำหนดสิทธิ์จะกำหนดเส้นทางโทเค็นอินพุตหรือตัวอย่างแต่ละรายการไปยังผู้เชี่ยวชาญที่เหมาะสม
โปรดดูรายละเอียดในเอกสารต่อไปนี้
- โครงข่ายระบบประสาทเทียมขนาดใหญ่อย่างไม่น่าเชื่อ: เลเยอร์การผสมผสานผู้เชี่ยวชาญแบบมีเกตแบบเบาบาง
- การผสมผสานผู้เชี่ยวชาญกับ Expert Choice Routing
MMIT
ตัวย่อของ Multimodal Instruction-Tuned
การซ้อนโมเดล
ระบบที่เลือกโมเดลที่เหมาะสมสําหรับการค้นหาการอนุมานที่เฉพาะเจาะจง
ลองจินตนาการถึงกลุ่มโมเดลที่มีตั้งแต่ขนาดใหญ่มาก (มีพารามิเตอร์จํานวนมาก) ไปจนถึงขนาดเล็กมาก (พารามิเตอร์จํานวนน้อยมาก) โมเดลขนาดใหญ่มากจะใช้ทรัพยากรการประมวลผลมากกว่าเมื่อถึงเวลาการอนุมานเมื่อเทียบกับโมเดลขนาดเล็ก อย่างไรก็ตาม โดยทั่วไปแล้วโมเดลขนาดใหญ่มากจะอนุมานคำขอที่ซับซ้อนได้มากกว่าโมเดลขนาดเล็ก การซ้อนโมเดลจะกําหนดความซับซ้อนของคําค้นหาการอนุมาน จากนั้นจะเลือกโมเดลที่เหมาะสมเพื่อดําเนินการอนุมาน แรงจูงใจหลักของการใช้โมเดลตามลำดับขั้นคือการลดต้นทุนการอนุมานโดยปกติแล้วระบบจะเลือกโมเดลขนาดเล็ก และเลือกโมเดลขนาดใหญ่สําหรับการค้นหาที่ซับซ้อนมากขึ้นเท่านั้น
ลองจินตนาการว่าโมเดลขนาดเล็กทํางานบนโทรศัพท์และโมเดลเวอร์ชันที่ใหญ่กว่าทํางานบนเซิร์ฟเวอร์ระยะไกล การซ้อนโมเดลที่ดีจะช่วยลดต้นทุนและเวลาในการตอบสนองโดยทำให้โมเดลขนาดเล็กจัดการคำของ่ายๆ ได้ และเรียกใช้เฉพาะโมเดลระยะไกลเพื่อจัดการคำขอที่ซับซ้อน
โปรดดูเราเตอร์จำลองด้วย
เราเตอร์จำลอง
อัลกอริทึมที่กําหนดโมเดลที่เหมาะสมสําหรับการอนุมานในการจัดเรียงโมเดลตามลําดับชั้น โดยปกติแล้ว ตัวกำหนดเส้นทางโมเดลจะเป็นโมเดลแมชชีนเลิร์นนิงที่ค่อยๆ เรียนรู้วิธีเลือกโมเดลที่ดีที่สุดสําหรับอินพุตหนึ่งๆ อย่างไรก็ตาม ในบางครั้ง เครื่องมือเปลี่ยนเส้นทางโมเดลอาจเป็นอัลกอริทึมที่ไม่เกี่ยวข้องกับแมชชีนเลิร์นนิงและเรียบง่ายกว่า
MOE
ตัวย่อของ mixture of experts
MT
ตัวย่อของการแปลด้วยคอมพิวเตอร์
N
ไม่มีคำตอบที่ถูกต้อง (NORA)
พรอมต์ที่มีคำตอบที่เหมาะสมหลายรายการ ตัวอย่างเช่น พรอมต์ต่อไปนี้ไม่มีคำตอบที่ถูกต้องเพียงคำตอบเดียว
เล่าเรื่องตลกเกี่ยวกับช้างให้ฟังหน่อย
การประเมินพรอมต์ที่ไม่มีคำตอบที่ถูกต้องอาจเป็นเรื่องยาก
NORA
ตัวย่อของคำตอบที่ถูกต้องไม่ได้มีเพียงคำตอบเดียว
O
One-Shot Prompting
พรอมต์ที่มีตัวอย่างรายการเดียวซึ่งแสดงวิธีที่โมเดลภาษาขนาดใหญ่ควรตอบกลับ ตัวอย่างเช่น พรอมต์ต่อไปนี้มีตัวอย่าง 1 รายการที่แสดงวิธีที่โมเดลภาษาขนาดใหญ่ควรตอบคำถาม
ส่วนต่างๆ ของพรอมต์ 1 รายการ | หมายเหตุ |
---|---|
สกุลเงินทางการของประเทศที่ระบุคืออะไร | คำถามที่คุณต้องการให้ LLM ตอบ |
ฝรั่งเศส: EUR | ตัวอย่างหนึ่ง |
อินเดีย: | คําค้นหาจริง |
เปรียบเทียบพรอมต์แบบยิงครั้งเดียวกับเงื่อนไขต่อไปนี้
P
การปรับแต่งที่มีประสิทธิภาพในแง่พารามิเตอร์
ชุดเทคนิคในการปรับแต่งโมเดลภาษาที่ผ่านการฝึกล่วงหน้า (PLM) ขนาดใหญ่อย่างมีประสิทธิภาพมากกว่าการปรับแต่งแบบเต็ม การปรับแต่งแบบประหยัดพารามิเตอร์มักจะปรับแต่งพารามิเตอร์น้อยกว่าการปรับแต่งแบบเต็ม แต่โดยทั่วไปจะสร้างโมเดลภาษาขนาดใหญ่ที่มีประสิทธิภาพดี (หรือเกือบจะดีเท่า) กับโมเดลภาษาขนาดใหญ่ที่สร้างจากการปรับแต่งแบบเต็ม
เปรียบเทียบการปรับแต่งแบบมีประสิทธิภาพของพารามิเตอร์กับสิ่งต่อไปนี้
การปรับแต่งที่มีประสิทธิภาพของพารามิเตอร์เรียกอีกอย่างว่าการปรับแต่งอย่างละเอียดที่มีประสิทธิภาพของพารามิเตอร์
PLM
ตัวย่อของโมเดลภาษาที่ฝึกล่วงหน้า
โมเดลหลังการฝึก
คําที่กําหนดไว้อย่างหลวมๆ ซึ่งโดยทั่วไปหมายถึงโมเดลที่ผ่านการฝึกล่วงหน้าซึ่งผ่านกระบวนการประมวลผลขั้นสุดท้ายแล้ว เช่น การดำเนินการต่อไปนี้อย่างน้อย 1 อย่าง
โมเดลที่ฝึกล่วงหน้า
โดยปกติแล้วคือโมเดลที่ผ่านการฝึกแล้ว หรืออาจหมายถึงเวกเตอร์การฝังที่ผ่านการฝึกก่อนหน้านี้
คําว่าโมเดลภาษาที่ฝึกล่วงหน้ามักจะหมายถึงโมเดลภาษาขนาดใหญ่ที่ผ่านการฝึกแล้ว
การฝึกขั้นต้น
การฝึกโมเดลครั้งแรกในชุดข้อมูลขนาดใหญ่ โมเดลที่ผ่านการฝึกล่วงหน้าบางรุ่นเป็นโมเดลที่ทำงานได้ไม่ดีนัก และมักจะต้องได้รับการปรับแต่งผ่านการฝึกเพิ่มเติม ตัวอย่างเช่น ผู้เชี่ยวชาญด้าน ML อาจฝึกโมเดลภาษาขนาดใหญ่ล่วงหน้าด้วยชุดข้อมูลข้อความขนาดใหญ่ เช่น หน้าภาษาอังกฤษทั้งหมดใน Wikipedia หลังจากการฝึกล่วงหน้าแล้ว โมเดลที่ได้อาจได้รับการปรับแต่งเพิ่มเติมผ่านเทคนิคต่อไปนี้
พรอมต์
ข้อความที่ป้อนเป็นอินพุตให้กับโมเดลภาษาขนาดใหญ่เพื่อปรับสภาพโมเดลให้ทำงานในลักษณะหนึ่งๆ พรอมต์อาจเป็นวลีสั้นๆ หรือยาวเท่าใดก็ได้ (เช่น ข้อความทั้งหมดของนวนิยาย) พรอมต์จะแบ่งออกเป็นหลายหมวดหมู่ ซึ่งรวมถึงหมวดหมู่ที่แสดงในตารางต่อไปนี้
หมวดหมู่พรอมต์ | ตัวอย่าง | หมายเหตุ |
---|---|---|
คำถาม | นกพิราบบินได้เร็วแค่ไหน | |
โรงเรียนฝึกอบรม | เขียนบทกวีตลกๆ เกี่ยวกับอาร์บิทราจ | พรอมต์ที่ขอให้โมเดลภาษาขนาดใหญ่ทําบางอย่าง |
ตัวอย่าง | แปลโค้ด Markdown เป็น HTML ตัวอย่างเช่น
Markdown: * รายการย่อย HTML: <ul> <li>รายการย่อย</li> </ul> |
ประโยคแรกในพรอมต์ตัวอย่างนี้คือวิธีการ ส่วนที่เหลือของพรอมต์คือตัวอย่าง |
บทบาท | อธิบายเหตุผลที่ต้องใช้การลดเชิงลาดในการสอนแมชชีนเลิร์นนิงเพื่อรับปริญญาเอกสาขาฟิสิกส์ | ส่วนแรกของประโยคคือคำสั่ง ส่วนวลี "จบปริญญาเอกสาขาฟิสิกส์" คือส่วนบทบาท |
อินพุตบางส่วนเพื่อให้โมเดลทำงานได้ | นายกรัฐมนตรีของสหราชอาณาจักรอาศัยอยู่ที่ | พรอมต์การป้อนข้อมูลบางส่วนอาจสิ้นสุดอย่างกะทันหัน (เช่น ตัวอย่างนี้) หรือลงท้ายด้วยขีดล่างก็ได้ |
โมเดล Generative AI สามารถตอบสนองต่อพรอมต์ด้วยข้อความ โค้ด รูปภาพ การฝัง วิดีโอ และแทบทุกสิ่ง
การเรียนรู้ตามพรอมต์
ความสามารถของโมเดลบางรายการที่ช่วยให้ปรับลักษณะการทํางานเพื่อตอบสนองต่อการป้อนข้อความแบบไม่เจาะจง (พรอมต์) ได้ ในกระบวนทัศน์การเรียนรู้แบบพรอมต์ทั่วไป โมเดลภาษาขนาดใหญ่จะตอบสนองต่อพรอมต์ด้วยการสร้างข้อความ ตัวอย่างเช่น สมมติว่าผู้ใช้ป้อนพรอมต์ต่อไปนี้
สรุปกฎการเคลื่อนที่ข้อที่ 3 ของนิวตัน
โมเดลที่เรียนรู้ตามพรอมต์ไม่ได้ผ่านการฝึกมาเพื่อตอบพรอมต์ก่อนหน้าโดยเฉพาะ แต่โมเดลจะ "รู้" ข้อเท็จจริงมากมายเกี่ยวกับฟิสิกส์ กฎทั่วไปของภาษา และองค์ประกอบต่างๆ ของคำตอบที่เป็นประโยชน์โดยทั่วไป ความรู้ดังกล่าวเพียงพอที่จะให้คำตอบที่เป็นประโยชน์ (หวังว่า) ความคิดเห็นเพิ่มเติมจากผู้ใช้ ("คำตอบนั้นซับซ้อนเกินไป" หรือ "Reaction คืออะไร") จะช่วยให้ระบบการเรียนรู้แบบพรอมต์บางระบบปรับปรุงความมีประโยชน์ของคำตอบได้ทีละน้อย
การออกแบบพรอมต์
คำพ้องความหมายของวิศวกรรมแบบทันที
Prompt Engineering
ศิลปะในการสร้างพรอมต์ที่ดึงดูดคำตอบที่ต้องการจากโมเดลภาษาขนาดใหญ่ มนุษย์ทำการดัดแปลงพรอมต์ การเขียนพรอมต์ที่มีโครงสร้างดีเป็นส่วนสําคัญในการรับคําตอบที่เป็นประโยชน์จากโมเดลภาษาขนาดใหญ่ การปรับแต่งข้อความแจ้งขึ้นอยู่กับหลายปัจจัย ได้แก่
- ชุดข้อมูลที่ใช้ฝึกล่วงหน้าและอาจปรับแต่งโมเดลภาษาขนาดใหญ่
- temperature และพารามิเตอร์การถอดรหัสอื่นๆ ที่โมเดลใช้ในการสร้างคำตอบ
ดูรายละเอียดเพิ่มเติมเกี่ยวกับการเขียนพรอมต์ที่เป็นประโยชน์ได้ในส่วนข้อมูลเบื้องต้นเกี่ยวกับการออกแบบพรอมต์
การออกแบบพรอมต์เป็นคําพ้องความหมายกับวิศวกรรมพรอมต์
การปรับแต่งพรอมต์
กลไกการปรับพารามิเตอร์อย่างมีประสิทธิภาพซึ่งจะเรียนรู้ "คำนำหน้า" ที่ระบบจะใส่ไว้ก่อนพรอมต์จริง
การปรับพรอมต์รูปแบบหนึ่ง ซึ่งบางครั้งเรียกว่าการปรับคำนำหน้าคือการใส่คำนำหน้าไว้ที่ทุกเลเยอร์ ในทางตรงกันข้าม การปรับแต่งพรอมต์ส่วนใหญ่จะเพิ่มเฉพาะคำนำหน้าในเลเยอร์อินพุต
R
ข้อความอ้างอิง
คำตอบของผู้เชี่ยวชาญต่อพรอมต์ ตัวอย่างเช่น จากพรอมต์ต่อไปนี้
แปลคำถาม "คุณชื่ออะไร" จากภาษาอังกฤษเป็นภาษาฝรั่งเศส
คำตอบของผู้เชี่ยวชาญอาจเป็นดังนี้
Comment vous appelez-vous?
เมตริกต่างๆ (เช่น ROUGE) จะวัดระดับที่ข้อความอ้างอิงตรงกับข้อความที่สร้างขึ้นของโมเดล ML
การเรียนรู้แบบเสริมแรงจากความคิดเห็นของมนุษย์ (RLHF)
ใช้ความคิดเห็นจากผู้ให้คะแนนที่เป็นมนุษย์เพื่อปรับปรุงคุณภาพของคำตอบของโมเดล เช่น กลไก RLHF อาจขอให้ผู้ใช้ให้คะแนนคุณภาพของคำตอบของโมเดลด้วยอีโมจิ 👍 หรือ 👎 จากนั้นระบบจะปรับการตอบกลับในอนาคตโดยอิงตามความคิดเห็นนั้น
พรอมต์บทบาท
ส่วนที่ไม่บังคับของพรอมต์ที่ระบุกลุ่มเป้าหมายสําหรับคําตอบของโมเดล Generative AI หากไม่มีพรอมต์บทบาท โมเดลภาษาขนาดใหญ่จะให้คำตอบที่อาจหรือไม่เป็นประโยชน์สำหรับบุคคลที่ถามคำถาม เมื่อใช้พรอมต์บทบาท โมเดลภาษาขนาดใหญ่จะตอบคำถามในลักษณะที่เหมาะสมและเป็นประโยชน์มากขึ้นสําหรับกลุ่มเป้าหมายที่เฉพาะเจาะจง ตัวอย่างเช่น ส่วนของพรอมต์บทบาทในพรอมต์ต่อไปนี้จะเป็นตัวหนา
- สรุปบทความนี้สำหรับปริญญาเอกสาขาเศรษฐศาสตร์
- อธิบายวิธีการทำงานของน้ำขึ้นน้ำลงสำหรับเด็กอายุ 10 ปี
- อธิบายวิกฤตการเงินปี 2008 พูดเหมือนพูดกับเด็กเล็กหรือสุนัขพันธุ์โกลเด้นรีทรีฟเวอร์
S
การปรับแต่งพรอมต์แบบเบา
เทคนิคการปรับโมเดลภาษาขนาดใหญ่สำหรับงานหนึ่งๆ โดยไม่ต้องปรับแต่งอย่างละเอียดซึ่งใช้ทรัพยากรมาก การปรับพรอมต์แบบนุ่มจะปรับพรอมต์โดยอัตโนมัติเพื่อให้บรรลุเป้าหมายเดียวกันแทนที่จะฝึกน้ำหนักทั้งหมดในโมเดลใหม่
เมื่อได้รับพรอมต์ที่เป็นข้อความ การปรับพรอมต์แบบ Soft มักจะเพิ่มการฝังโทเค็นเพิ่มเติมลงในพรอมต์ และใช้ Backpropagation เพื่อเพิ่มประสิทธิภาพอินพุต
พรอมต์ "แบบแข็ง" มีโทเค็นจริงแทนการฝังโทเค็น
T
อุณหภูมิ
ไฮเปอร์พารามิเตอร์ที่ควบคุมระดับความสุ่มของเอาต์พุตของโมเดล อุณหภูมิที่สูงขึ้นจะทำให้เอาต์พุตเป็นแบบสุ่มมากขึ้น ส่วนอุณหภูมิที่ต่ำลงจะทำให้เอาต์พุตเป็นแบบสุ่มน้อยลง
การเลือกอุณหภูมิที่เหมาะสมที่สุดขึ้นอยู่กับแอปพลิเคชันเฉพาะและพร็อพเพอร์ตี้ที่ต้องการของเอาต์พุตของโมเดล เช่น คุณอาจเพิ่มอุณหภูมิเมื่อสร้างแอปพลิเคชันที่สร้างเอาต์พุตครีเอทีฟโฆษณา ในทางกลับกัน คุณอาจลดอุณหภูมิเมื่อสร้างโมเดลที่จัดประเภทรูปภาพหรือข้อความเพื่อปรับปรุงความแม่นยำและความสอดคล้องของโมเดล
อุณหภูมิมักใช้ร่วมกับ softmax
Z
การแจ้งเตือนแบบไม่แสดงตัวอย่าง
พรอมต์ที่ไม่ได้แสดงตัวอย่างวิธีที่คุณต้องการให้โมเดลภาษาขนาดใหญ่ตอบกลับ เช่น
ส่วนต่างๆ ของพรอมต์ 1 รายการ | หมายเหตุ |
---|---|
สกุลเงินทางการของประเทศที่ระบุคืออะไร | คำถามที่คุณต้องการให้ LLM ตอบ |
อินเดีย: | คําค้นหาจริง |
โมเดลภาษาขนาดใหญ่อาจตอบกลับด้วยสิ่งต่อไปนี้
- รูปี
- INR
- ₹
- รูปีอินเดีย
- รูปี
- รูปีอินเดีย
คำตอบทั้งหมดถูกต้อง แต่คุณอาจต้องการรูปแบบที่เฉพาะเจาะจง
เปรียบเทียบพรอมต์แบบไม่ใช้ตัวอย่างกับคำศัพท์ต่อไปนี้