機械学習用語集: Google Cloud

このページには、Google Cloud の用語集の用語が記載されています。用語集のすべての用語については、こちらをクリックしてください。

A

アクセラレータ チップ

#GoogleCloud

ディープ ラーニング アルゴリズムに必要な主要な計算を実行するように設計された、特殊なハードウェア コンポーネントのカテゴリ。

アクセラレータ チップ(略してアクセラレータ)を使用すると、汎用 CPU と比較してトレーニング タスクと推論タスクの速度と効率を大幅に向上させることができます。ニューラル ネットワークのトレーニングや、同様の計算負荷の高いタスクに最適です。

アクセラレータ チップの例は次のとおりです。

  • Google の Tensor Processing Unit(TPU)と、ディープ ラーニング専用のハードウェア。
  • NVIDIA の GPU は、元々はグラフィック処理用に設計されていますが、並列処理を可能にするように設計されているため、処理速度を大幅に向上させることができます。

B

バッチ推論

#TensorFlow
#GoogleCloud

小さなサブセット(「バッチ」)に分割された複数のラベルなしの例に対する予測を推論するプロセス。

バッチ推論では、アクセラレータ チップの並列化機能を利用できます。つまり、複数のアクセラレータがラベルのないサンプルの異なるバッチで予測を同時に推論できるため、1 秒あたりの推論数を大幅に増やすことができます。

詳細については、ML 集中講座の本番環境の ML システム: 静的推論と動的推論をご覧ください。

C

Cloud TPU

#TensorFlow
#GoogleCloud

Google Cloud での ML ワークロードの高速化を目的として設計された特殊なハードウェア アクセラレータ。

D

デバイス

#TensorFlow
#GoogleCloud

次の 2 つの定義が可能なオーバーロードされた用語。

  1. TensorFlow セッションを実行できるハードウェアのカテゴリ(CPU、GPU、TPU など)。
  2. アクセラレータ チップ(GPU または TPU)で ML モデルをトレーニングする場合、テンソルエンベディングを実際に操作するシステムの部分。デバイスはアクセラレータ チップを搭載しています。一方、ホストは通常 CPU で実行されます。

H

ホスト

#TensorFlow
#GoogleCloud

アクセラレータ チップ(GPU または TPU)で ML モデルをトレーニングする場合、システムの次の両方を制御する部分:

  • コードの全体的なフロー。
  • 入力パイプラインの抽出と変換。

ホストは通常、アクセラレータ チップではなく CPU で実行されます。デバイスは、アクセラレータ チップでテンソルを操作します。

M

メッシュ

#TensorFlow
#GoogleCloud

ML 並列プログラミングでは、データとモデルを TPU チップに割り当て、これらの値のシャーディングまたは複製方法を定義する用語。

メッシュは、次のいずれかを意味するオーバーロードされた用語です。

  • TPU チップの物理レイアウト。
  • データとモデルを TPU チップにマッピングするための抽象的な論理構造。

どちらの場合も、メッシュはシェイプとして指定されます。

S

シャード

#TensorFlow
#GoogleCloud

トレーニング セットまたはモデルの論理的な分割。通常、一部のプロセスは、サンプルまたはパラメータを(通常は)同じサイズのチャンクに分割してシャードを作成します。各シャードは異なるマシンに割り当てられます。

モデルのシャーディングはモデルの並列処理と呼ばれ、データのシャーディングはデータの並列処理と呼ばれます。

T

TPU(Tensor Processing Unit)

#TensorFlow
#GoogleCloud

機械学習ワークロードのパフォーマンスを最適化するアプリケーション固有の集積回路(ASIC)。これらの ASIC は、TPU デバイスに複数の TPU チップとしてデプロイされます。

TPU

#TensorFlow
#GoogleCloud

Tensor Processing Unit の省略形。

TPU チップ

#TensorFlow
#GoogleCloud

機械学習ワークロード用に最適化されたオンチップの高帯域幅メモリを備えた、プログラム可能な線形代数アクセラレータ。複数の TPU チップが TPU デバイスにデプロイされます。

TPU デバイス

#TensorFlow
#GoogleCloud

複数の TPU チップ、高帯域幅ネットワーク インターフェース、システム冷却ハードウェアを備えたプリント回路基板(PCB)。

TPU マスター

#TensorFlow
#GoogleCloud

ホストマシンで実行される中央調整プロセス。データ、結果、プログラム、パフォーマンス、システムの健全性に関する情報を TPU ワーカーに送受信します。TPU マスターは、TPU デバイスのセットアップとシャットダウンも管理します。

TPU ノード

#TensorFlow
#GoogleCloud

特定の TPU タイプを持つ Google Cloud 上の TPU リソース。TPU ノードは、ピア VPC ネットワークから VPC ネットワークに接続します。TPU ノードは、Cloud TPU API で定義されたリソースです。

TPU Pod

#TensorFlow
#GoogleCloud

Google データセンター内の TPU デバイスの特定の構成。TPU Pod 内のすべてのデバイスは、専用の高速ネットワークを介して相互に接続されています。TPU Pod は、特定の TPU バージョンで使用可能な TPU デバイスの最大構成です。

TPU リソース

#TensorFlow
#GoogleCloud

Google Cloud で作成、管理、使用される TPU エンティティ。たとえば、TPU ノードTPU タイプは TPU リソースです。

TPU スライス

#TensorFlow
#GoogleCloud

TPU スライスは、TPU Pod 内の TPU デバイスの部分的な部分です。TPU スライス内のすべてのデバイスは、専用の高速ネットワークを介して相互に接続されています。

TPU タイプ

#TensorFlow
#GoogleCloud

特定の TPU ハードウェア バージョンの 1 つ以上の TPU デバイスの構成。TPU タイプは、Google Cloud で TPU ノードを作成するときに選択します。たとえば、v2-8 TPU タイプは、8 コアを持つ単一の TPU v2 デバイスです。v3-2048 TPU タイプには、256 個のネットワーク化された TPU v3 デバイスと合計 2,048 個のコアがあります。TPU タイプは、Cloud TPU API で定義されたリソースです。

TPU ワーカー

#TensorFlow
#GoogleCloud

ホストマシンで実行され、TPU デバイスで ML プログラムを実行するプロセス。