อภิธานศัพท์ของแมชชีนเลิร์นนิง: TensorFlow

หน้านี้มีคำศัพท์ในอภิธานศัพท์ของ TensorFlow ดูคำศัพท์ทั้งหมดในอภิธานศัพท์ได้โดยการคลิกที่นี่

B

การอนุมานแบบกลุ่ม

#TensorFlow
#GoogleCloud

กระบวนการอนุมานการคาดการณ์จากตัวอย่างที่ไม่มีป้ายกำกับหลายรายการซึ่งแบ่งออกเป็นชุดย่อยขนาดเล็ก ("กลุ่ม")

การอนุมานแบบเป็นกลุ่มใช้ประโยชน์จากฟีเจอร์การขนานของชิปเร่งความเร็วได้ กล่าวคือ ตัวเร่งหลายตัวสามารถอนุมานการคาดการณ์ในชุดตัวอย่างที่ไม่มีป้ายกำกับหลายชุดพร้อมกัน ซึ่งจะเพิ่มจำนวนการอนุมานต่อวินาทีได้อย่างมาก

ดูข้อมูลเพิ่มเติมได้ที่ระบบ ML เวอร์ชันที่ใช้งานจริง: การอนุมานแบบคงที่เทียบกับแบบไดนามิกในหลักสูตรเร่งรัดเกี่ยวกับแมชชีนเลิร์นนิง

C

Cloud TPU

#TensorFlow
#GoogleCloud

ตัวเร่งฮาร์ดแวร์เฉพาะที่ออกแบบมาเพื่อเร่งความเร็วของภาระงานแมชชีนเลิร์นนิงใน Google Cloud

D

Dataset API (tf.data)

#TensorFlow

TensorFlow API ระดับสูงสําหรับการอ่านข้อมูลและการเปลี่ยนรูปแบบข้อมูลให้อยู่ในรูปแบบที่อัลกอริทึมของแมชชีนเลิร์นนิงต้องการ ออบเจ็กต์ tf.data.Dataset แสดงถึงลําดับองค์ประกอบ ซึ่งแต่ละองค์ประกอบมี Tensor อย่างน้อย 1 รายการ ออบเจ็กต์ tf.data.Iterator ให้สิทธิ์เข้าถึงองค์ประกอบของ Dataset

อุปกรณ์

#TensorFlow
#GoogleCloud

คําที่ใช้งานมากเกินไปซึ่งมีคําจํากัดความที่เป็นไปได้ 2 รายการดังนี้

  1. หมวดหมู่ฮาร์ดแวร์ที่เรียกใช้เซสชัน TensorFlow ได้ ซึ่งรวมถึง CPU, GPU และ TPU
  2. เมื่อฝึกโมเดล ML ในชิปเร่งความเร็ว (GPU หรือ TPU) ส่วนที่ทำงานจริงของระบบคือการจัดการเทนเซอร์และการฝัง อุปกรณ์ทำงานด้วยชิปเร่ง ในทางตรงกันข้าม โฮสต์มักทำงานบน CPU

E

การดำเนินการแบบ Eager

#TensorFlow

สภาพแวดล้อมการเขียนโปรแกรม TensorFlow ที่การดำเนินการจะทำงานทันที ในทางตรงกันข้าม การดำเนินการที่เรียกใช้ในการดำเนินการกราฟจะไม่ทำงานจนกว่าจะมีการประเมินอย่างชัดเจน การดำเนินการอย่างเร่งด่วนเป็นอินเทอร์เฟซแบบบังคับ ซึ่งคล้ายกับโค้ดในภาษาโปรแกรมส่วนใหญ่ โดยทั่วไปแล้ว โปรแกรมการดำเนินการแบบ Eager นั้นแก้ไขข้อบกพร่องได้ง่ายกว่าโปรแกรมการดำเนินการแบบกราฟ

Estimator

#TensorFlow

TensorFlow API ที่เลิกใช้งานแล้ว ใช้ tf.keras แทน Estimators

F

Feature Engineering

#fundamentals
#TensorFlow

กระบวนการที่มีขั้นตอนต่อไปนี้

  1. พิจารณาว่าฟีเจอร์ใดบ้างที่อาจมีประโยชน์ในการเทรนโมเดล
  2. แปลงข้อมูลดิบจากชุดข้อมูลเป็นฟีเจอร์เหล่านั้นในเวอร์ชันที่มีประสิทธิภาพ

เช่น คุณอาจพิจารณาว่า temperature อาจเป็นฟีเจอร์ที่มีประโยชน์ จากนั้น คุณอาจลองใช้การแบ่งกลุ่มเพื่อเพิ่มประสิทธิภาพสิ่งที่โมเดลสามารถเรียนรู้จากช่วง temperature ที่ต่างกัน

บางครั้งเราเรียกวิศวกรรมด้านฟีเจอร์ว่าการดึงข้อมูลฟีเจอร์หรือการสร้างฟีเจอร์

ดูข้อมูลเพิ่มเติมที่ข้อมูลตัวเลข: วิธีที่โมเดลนำเข้าข้อมูลโดยใช้เวกเตอร์ฟีเจอร์ในหลักสูตรเร่งรัดเกี่ยวกับแมชชีนเลิร์นนิง

ข้อมูลจำเพาะของฟีเจอร์

#TensorFlow

อธิบายข้อมูลที่จำเป็นในการดึงข้อมูลฟีเจอร์จากบัฟเฟอร์โปรโตคอล tf.Example เนื่องจากบัฟเฟอร์โปรโตคอล tf.Example เป็นเพียงคอนเทนเนอร์สำหรับข้อมูล คุณจึงต้องระบุข้อมูลต่อไปนี้

  • ข้อมูลที่จะดึง (นั่นคือคีย์สําหรับฟีเจอร์)
  • ประเภทข้อมูล (เช่น float หรือ int)
  • ความยาว (คงที่หรือผันแปร)

G

กราฟ

#TensorFlow

ใน TensorFlow ข้อมูลจำเพาะการประมวลผล โหนดในกราฟแสดงถึงการดำเนินการ ขอบมีทิศทางและแสดงการนําส่งผลลัพธ์ของการดำเนินการ (Tensor) ไปยังการดำเนินการอื่น ใช้ TensorBoard เพื่อแสดงภาพกราฟ

การดำเนินการของกราฟ

#TensorFlow

สภาพแวดล้อมการเขียนโปรแกรม TensorFlow ที่โปรแกรมจะสร้างกราฟก่อน จากนั้นจึงเรียกใช้กราฟทั้งหมดหรือบางส่วน การดำเนินการของกราฟคือโหมดการดำเนินการเริ่มต้นใน TensorFlow 1.x

ตรงข้ามกับการดำเนินการแบบรอดำเนินการ

H

ผู้จัด

#TensorFlow
#GoogleCloud

เมื่อฝึกโมเดล ML ในชิปเร่งความเร็ว (GPU หรือ TPU) ส่วนของระบบที่ควบคุมทั้ง 2 รายการต่อไปนี้

  • ขั้นตอนโดยรวมของโค้ด
  • การสกัดและการเปลี่ยนรูปแบบไปป์ไลน์อินพุต

โดยปกติแล้ว โฮสต์จะทำงานบน CPU ไม่ใช่ชิปเร่งความเร็ว ส่วนอุปกรณ์จะจัดการเทนเซอร์ในชิปเร่งความเร็ว

L

Layers API (tf.layers)

#TensorFlow

TensorFlow API สำหรับการสร้างเครือข่ายประสาท ลึก โดยการประกอบเลเยอร์ Layers API ช่วยให้คุณสร้างเลเยอร์ประเภทต่างๆ ได้ เช่น

Layers API เป็นไปตามรูปแบบ API ของเลเยอร์ Keras กล่าวคือ นอกเหนือจากคำนำหน้าที่แตกต่างกันแล้ว ฟังก์ชันทั้งหมดใน Layers API จะมีชื่อและลายเซ็นเหมือนกับฟังก์ชันใน Keras Layers API

M

Mesh

#TensorFlow
#GoogleCloud

ในโปรแกรมขนานของ ML เป็นคําที่เชื่อมโยงกับการกำหนดข้อมูลและรูปแบบให้กับชิป TPU รวมถึงการกำหนดวิธีแบ่งหรือทำซ้ำค่าเหล่านี้

Mesh เป็นคําที่มีความหมายหลายอย่าง ซึ่งอาจหมายถึงอย่างใดอย่างหนึ่งต่อไปนี้

  • เลย์เอาต์ของชิป TPU จริง
  • โครงสร้างเชิงตรรกะนามธรรมสำหรับการแมปข้อมูลและโมเดลไปยังชิป TPU

ไม่ว่าจะในกรณีใด ระบบจะระบุเมชเป็นรูปร่าง

เมตริก

#TensorFlow

สถิติที่คุณสนใจ

วัตถุประสงค์คือเมตริกที่ระบบแมชชีนเลิร์นนิงพยายามเพิ่มประสิทธิภาพ

N

โหนด (กราฟ TensorFlow)

#TensorFlow

การดำเนินการในกราฟ TensorFlow

O

การดำเนินการ (op)

#TensorFlow

ใน TensorFlow หมายถึงกระบวนการใดๆ ที่สร้าง ดัดแปลง หรือทำลาย Tensor เช่น การคูณเมทริกซ์เป็นการดำเนินการที่ใช้ Tensor 2 รายการเป็นอินพุตและสร้าง Tensor 1 รายการเป็นเอาต์พุต

P

เซิร์ฟเวอร์พารามิเตอร์ (PS)

#TensorFlow

งานที่จะติดตามพารามิเตอร์ของโมเดลในสภาพแวดล้อมแบบกระจาย

Q

คิว

#TensorFlow

การดำเนินการของ TensorFlow ที่ใช้โครงสร้างข้อมูลคิว มักใช้ใน I/O

R

rank (Tensor)

#TensorFlow

จํานวนมิติข้อมูลใน Tensor เช่น เวกเตอร์มีลําดับ 1, เมทริกซ์มีลําดับ 2 และจำนวนจริงมีลําดับ 0

โปรดอย่าสับสนกับลําดับ (ลําดับชั้น)

ไดเรกทอรีรูท

#TensorFlow

ไดเรกทอรีที่คุณระบุสำหรับการโฮสต์ไดเรกทอรีย่อยของไฟล์ตรวจสอบจุดพักและเหตุการณ์ของ TensorFlow ของโมเดลหลายรายการ

S

SavedModel

#TensorFlow

รูปแบบที่แนะนําสําหรับการบันทึกและการกู้คืนโมเดล TensorFlow SavedModel เป็นรูปแบบการจัดรูปแบบแบบกู้คืนได้ซึ่งไม่ขึ้นอยู่กับภาษา ซึ่งช่วยให้ระบบและเครื่องมือระดับสูงขึ้นสามารถผลิต ใช้ และเปลี่ยนรูปแบบโมเดล TensorFlow ได้

ดูรายละเอียดทั้งหมดได้ที่ส่วนการบันทึกและการกู้คืนในคู่มือโปรแกรมเมอร์ TensorFlow

ประหยัด

#TensorFlow

ออบเจ็กต์ TensorFlow ที่มีหน้าที่บันทึกจุดตรวจสอบของโมเดล

ชาร์ด

#TensorFlow
#GoogleCloud

การแบ่งชุดข้อมูลการฝึกหรือโมเดลอย่างมีเหตุผล โดยทั่วไป กระบวนการบางอย่างจะสร้างกลุ่มย่อยโดยการแบ่งตัวอย่างหรือพารามิเตอร์ออกเป็นกลุ่มที่มีขนาดเท่าๆ กัน (โดยปกติ) จากนั้นระบบจะกำหนดแต่ละกลุ่มให้กับเครื่องที่แตกต่างกัน

การแยกกลุ่มโมเดลเรียกว่าการทํางานแบบขนานของโมเดล ส่วนการแยกกลุ่มข้อมูลเรียกว่าการทํางานแบบขนานของข้อมูล

สรุป

#TensorFlow

ใน TensorFlow ค่าหรือชุดค่าที่คํานวณในขั้นตอนหนึ่งๆ ซึ่งมักใช้ติดตามเมตริกของโมเดลระหว่างการฝึก

T

Tensor

#TensorFlow

โครงสร้างข้อมูลหลักในโปรแกรม TensorFlow เทนเซอร์เป็นโครงสร้างข้อมูล N มิติ (โดยที่ N อาจมีค่ามาก) ซึ่งมักเป็นจำนวนจริง เวกเตอร์ หรือเมทริกซ์ องค์ประกอบของ Tensor สามารถเก็บค่าจำนวนเต็ม ทศนิยม หรือสตริงได้

TensorBoard

#TensorFlow

แดชบอร์ดที่แสดงข้อมูลสรุปที่บันทึกไว้ระหว่างการเรียกใช้โปรแกรม TensorFlow อย่างน้อย 1 รายการ

TensorFlow

#TensorFlow

แพลตฟอร์มแมชชีนเลิร์นนิงแบบกระจายศูนย์ขนาดใหญ่ นอกจากนี้ คำว่า "เทสลา" ยังหมายถึงเลเยอร์ API พื้นฐานในสแต็ก TensorFlow ซึ่งรองรับการคํานวณทั่วไปในกราฟการไหลของข้อมูล

แม้ว่า TensorFlow จะใช้สำหรับแมชชีนเลิร์นนิงเป็นหลัก แต่คุณก็ใช้ TensorFlow สำหรับงานที่ไม่เกี่ยวข้องกับ ML ซึ่งต้องใช้การคํานวณตัวเลขโดยใช้กราฟการไหลของข้อมูลได้เช่นกัน

TensorFlow Playground

#TensorFlow

โปรแกรมที่แสดงภาพว่าไฮเปอร์พารามิเตอร์ต่างๆ ส่งผลต่อการฝึกโมเดล (โดยเฉพาะอย่างยิ่งการฝึกโครงข่ายประสาท) อย่างไร ไปที่ http://playground.tensorflow.org เพื่อทดลองใช้ TensorFlow Playground

TensorFlow Serving

#TensorFlow

แพลตฟอร์มสำหรับทำให้โมเดลที่ฝึกแล้วใช้งานได้จริง

Tensor Processing Unit (TPU)

#TensorFlow
#GoogleCloud

วงจรรวมเฉพาะแอปพลิเคชัน (ASIC) ที่เพิ่มประสิทธิภาพของปริมาณงานแมชชีนเลิร์นนิง ASIC เหล่านี้จะติดตั้งใช้งานเป็นชิป TPU หลายตัวในอุปกรณ์ TPU

อันดับ Tensor

#TensorFlow

ดูrank (Tensor)

รูปร่างของ Tensor

#TensorFlow

จํานวนองค์ประกอบที่ Tensor มีในมิติข้อมูลต่างๆ เช่น [5, 10] Tensor มีรูปร่างเป็น 5 ในมิติข้อมูลหนึ่งและ 10 ในอีกมิติข้อมูลหนึ่ง

ขนาด Tensor

#TensorFlow

จํานวนทั้งหมดของ Scalar ที่ Tensor มี เช่น เทนเซอร์ [5, 10] มีขนาดใหญ่ 50

tf.Example

#TensorFlow

มาตรฐาน บัฟเฟอร์โปรโตคอล สําหรับอธิบายข้อมูลอินพุตสําหรับการฝึกหรืออนุมานโมเดลแมชชีนเลิร์นนิง

tf.keras

#TensorFlow

การใช้งาน Keras ที่ผสานรวมกับ TensorFlow

TPU

#TensorFlow
#GoogleCloud

ตัวย่อของ Tensor Processing Unit

ชิป TPU

#TensorFlow
#GoogleCloud

ตัวเร่งการอัลเจบราเชิงเส้นแบบโปรแกรมได้พร้อมหน่วยความจำแบนด์วิดท์สูงบนชิปที่เพิ่มประสิทธิภาพสำหรับภาระงานแมชชีนเลิร์นนิง มีการติดตั้งใช้งานชิป TPU หลายตัวในอุปกรณ์ TPU

อุปกรณ์ TPU

#TensorFlow
#GoogleCloud

แผงวงจรพิมพ์ (PCB) ที่มีชิป TPU หลายตัว อินเทอร์เฟซเครือข่ายที่มีแบนด์วิดท์สูง และฮาร์ดแวร์ระบายความร้อนของระบบ

TPU หลัก

#TensorFlow
#GoogleCloud

กระบวนการประสานงานส่วนกลางที่ทำงานบนเครื่องโฮสต์ซึ่งส่งและรับข้อมูล ผลลัพธ์ โปรแกรม ประสิทธิภาพ และข้อมูลเกี่ยวกับสถานะของระบบไปยังผู้ปฏิบัติงาน TPU นอกจากนี้ TPU หลักยังจัดการการตั้งค่าและการปิดอุปกรณ์ TPU ด้วย

โหนด TPU

#TensorFlow
#GoogleCloud

ทรัพยากร TPU ใน Google Cloud ที่มีประเภท TPU ที่เฉพาะเจาะจง นอต TPU จะเชื่อมต่อกับเครือข่าย VPC จากเครือข่าย VPC แบบเพียร์ โหนด TPU เป็นทรัพยากรที่กําหนดไว้ใน Cloud TPU API

พ็อด TPU

#TensorFlow
#GoogleCloud

การกําหนดค่าที่เฉพาะเจาะจงของอุปกรณ์ TPU ในศูนย์ข้อมูลของ Google อุปกรณ์ทั้งหมดในพ็อด TPU จะเชื่อมต่อกันผ่านเครือข่ายความเร็วสูงโดยเฉพาะ พ็อด TPU เป็นการกำหนดค่าอุปกรณ์ TPU ขนาดใหญ่ที่สุดที่ใช้ได้กับ TPU เวอร์ชันหนึ่งๆ

ทรัพยากร TPU

#TensorFlow
#GoogleCloud

เอนทิตี TPU ใน Google Cloud ที่คุณสร้าง จัดการ หรือใช้งาน เช่น โหนด TPU และประเภท TPU เป็นทรัพยากร TPU

ส่วนของ TPU

#TensorFlow
#GoogleCloud

ส่วน TPU คือส่วนของอุปกรณ์ TPU ในพ็อด TPU อุปกรณ์ทั้งหมดในเสี้ยว TPU จะเชื่อมต่อกันผ่านเครือข่ายความเร็วสูงเฉพาะ

ประเภท TPU

#TensorFlow
#GoogleCloud

การกําหนดค่าอุปกรณ์ TPU อย่างน้อย 1 เครื่องที่มีฮาร์ดแวร์ TPU เวอร์ชันที่เฉพาะเจาะจง คุณเลือกประเภท TPU เมื่อสร้างโหนด TPU ใน Google Cloud เช่น v2-8 ประเภท TPU คืออุปกรณ์ TPU v2 เดี่ยวที่มี 8 คอร์ TPU ประเภท v3-2048 มีอุปกรณ์ TPU v3 แบบใช้เครือข่าย 256 เครื่องและมีแกนทั้งหมด 2,048 แกน ประเภท TPU เป็นทรัพยากรที่ระบุไว้ใน Cloud TPU API

TPU Worker

#TensorFlow
#GoogleCloud

กระบวนการที่ทำงานบนเครื่องโฮสต์และเรียกใช้โปรแกรมแมชชีนเลิร์นนิงในอุปกรณ์ TPU