अपनी समझ को आज़माएं
संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
यहां दिए गए सवालों से, आपको एमएल के बुनियादी सिद्धांतों को बेहतर तरीके से समझने में मदद मिलती है.
अनुमान लगाने की क्षमता
सुपरवाइज़्ड एमएल मॉडल को, लेबल किए गए उदाहरणों वाले डेटासेट का इस्तेमाल करके ट्रेन किया जाता है. मॉडल, सुविधाओं से लेबल का अनुमान लगाने का तरीका सीखता है. हालांकि, किसी डेटासेट में मौजूद हर फ़ीचर में, भविष्य का अनुमान लगाने की सुविधा नहीं होती. कुछ मामलों में, सिर्फ़ कुछ सुविधाएं ही लेबल के अनुमान के तौर पर काम करती हैं. नीचे दिए गए डेटासेट में, कीमत को लेबल के तौर पर और बाकी कॉलम को सुविधाओं के तौर पर इस्तेमाल करें.
आपके हिसाब से, कार की कीमत का अनुमान लगाने के लिए इनमें से कौनसी तीन सुविधाएं सबसे ज़्यादा काम की हैं?
Make_model, year, miles.
कार के ब्रैंड/मॉडल, साल, और माइलेज से उसकी कीमत का अनुमान लगाया जा सकता है.
Color, height, make_model.
कार की ऊंचाई और रंग से, कार की कीमत का पता नहीं चलता.
मील, गियरबॉक्स, make_model.
गियरबॉक्स, कीमत का मुख्य अनुमान नहीं लगाता.
Tire_size, wheel_base, year.
टायर का साइज़ और व्हील बेस, कार की कीमत का सटीक अनुमान नहीं लगाते.
सुपरवाइज़्ड और अनसुपरवाइज़्ड लर्निंग
समस्या के हिसाब से, आपको निगरानी में रखे गए डिवाइसों या बिना निगरानी वाले डिवाइसों के लिए, कोई एक तरीका इस्तेमाल करना होगा.
उदाहरण के लिए, अगर आपको पहले से ही उस वैल्यू या कैटगरी के बारे में पता है जिसका अनुमान लगाना है, तो सुपरवाइज़्ड लर्निंग का इस्तेमाल किया जाएगा. हालांकि, अगर आपको यह जानना है कि आपके डेटासेट में, मिलते-जुलते उदाहरणों के सेगमेंटेशन या ग्रुपिंग मौजूद हैं या नहीं, तो आपको बिना निगरानी वाली लर्निंग का इस्तेमाल करना होगा.
मान लें कि आपके पास किसी ऑनलाइन शॉपिंग वेबसाइट के उपयोगकर्ताओं का डेटासेट है और इसमें ये कॉलम शामिल हैं:
अगर आपको साइट पर आने वाले उपयोगकर्ताओं के टाइप को समझना है, तो क्या आप सुपरवाइज़्ड या अनसुपरवाइज़्ड लर्निंग का इस्तेमाल करेंगे?
अनसुपरवाइज़्ड लर्निंग.
हम चाहते हैं कि मॉडल, मिलते-जुलते ग्राहकों के ग्रुप को क्लस्टर करे. इसलिए, हम बिना निगरानी वाली लर्निंग का इस्तेमाल करेंगे. मॉडल के उपयोगकर्ताओं को क्लस्टर में बांटने के बाद,
हम हर क्लस्टर के लिए अपने नाम बनाते हैं. उदाहरण के लिए,
"छूट पाने वाले," "ऑफ़र खोजने वाले," "सर्फ़र," "वफादार," और "भटकने वाले."
सुपरवाइज़्ड लर्निंग, क्योंकि मुझे यह अनुमान लगाना है कि उपयोगकर्ता किस क्लास से है.
सुपरवाइज़्ड लर्निंग में, डेटासेट में वह लेबल होना चाहिए जिसका अनुमान लगाया जा रहा है. डेटासेट में, ऐसा कोई लेबल नहीं है जो उपयोगकर्ता की कैटगरी के बारे में बताता हो.
मान लें कि आपके पास घरों के लिए ऊर्जा खर्च का डेटासेट है, जिसमें ये कॉलम हैं:
नए बनाए गए घर के लिए, हर साल इस्तेमाल किए गए किलोवॉट-घंटे का अनुमान लगाने के लिए, किस तरह के एमएल का इस्तेमाल किया जाएगा?
सुपरवाइज़्ड लर्निंग.
सुपरवाइज़्ड लर्निंग, लेबल किए गए उदाहरणों पर ट्रेनिंग देती है. इस डेटासेट में, "हर साल इस्तेमाल किए गए किलोवॉट घंटे" लेबल होगा, क्योंकि यह वह वैल्यू है जिसका अनुमान मॉडल को लगाना है. इनमें ये सुविधाएं शामिल होंगी:
"खास फ़ीचर,” "जगह की जानकारी,” और "बनने का साल.”
अनसुपरवाइज़्ड लर्निंग.
अनसुपरवाइज़्ड लर्निंग में, बिना लेबल वाले उदाहरणों का इस्तेमाल किया जाता है. इस उदाहरण में,
"हर साल इस्तेमाल किए गए किलोवॉट घंटे” लेबल होगा, क्योंकि यह वह वैल्यू है जिसका अनुमान मॉडल को लगाना है.
मान लें कि आपके पास फ़्लाइट का डेटासेट है, जिसमें ये कॉलम हैं:
अगर आपको हवाई टिकट की कीमत का अनुमान लगाना है, तो क्या आप रेग्रेसन या क्लासिफ़िकेशन का इस्तेमाल करेंगे?
रिग्रेशन
रेग्रेसन मॉडल का आउटपुट, संख्या वाली वैल्यू होती है.
कैटगरी
क्लासिफ़िकेशन मॉडल का आउटपुट एक अलग वैल्यू होता है,
आम तौर पर यह एक शब्द होता है. इस मामले में, हवाई जहाज़ के टिकट की कीमत एक संख्या है.
क्या डेटासेट के आधार पर, किसी एयरप्लेन टिकट की कीमत को "ज़्यादा", "औसत" या "कम" के तौर पर बांटने के लिए, कैटगरी तय करने वाले मॉडल को ट्रेन किया जा सकता है?
हां, लेकिन हमें पहले airplane_ticket_cost
कॉलम में मौजूद अंकों वाली वैल्यू को कैटगरी वाली वैल्यू में बदलना होगा.
डेटासेट से क्लासिफ़िकेशन मॉडल बनाया जा सकता है.
आपको कुछ ऐसा करना होगा:
- यह पता लगाएं कि आपके जाने वाले हवाई अड्डे से, मकसद के हवाई अड्डे तक जाने के लिए टिकट की औसत कीमत कितनी है.
- "ज़्यादा", "औसत", और "कम" के लिए थ्रेशोल्ड तय करें.
- अनुमानित लागत की तुलना थ्रेशोल्ड से करें और वैल्यू की कैटगरी दिखाएं.
नहीं. क्लासिफ़िकेशन मॉडल नहीं बनाया जा सकता. airplane_ticket_cost
की वैल्यू, कैटगरी वाली नहीं, बल्कि संख्या वाली होती हैं.
थोड़े से काम से, कैटगरी तय करने वाला मॉडल बनाया जा सकता है.
नहीं. क्लासिफ़िकेशन मॉडल सिर्फ़ दो कैटगरी का अनुमान लगाते हैं, जैसे कि
spam
या not_spam
. इस मॉडल को तीन कैटगरी का अनुमान लगाना होगा.
क्लासिफ़िकेशन मॉडल, कई कैटगरी का अनुमान लगा सकते हैं. इन्हें
मल्टीक्लास क्लासिफ़िकेशन मॉडल कहा जाता है.
ट्रेनिंग और आकलन
किसी मॉडल को ट्रेन करने के बाद, हम लेबल किए गए उदाहरणों वाले डेटासेट का इस्तेमाल करके उसका आकलन करते हैं. साथ ही, मॉडल की अनुमानित वैल्यू की तुलना लेबल की असल वैल्यू से करते हैं.
सवाल के लिए दो सबसे सही जवाब चुनें.
अगर मॉडल के अनुमान बहुत अलग हैं, तो उन्हें बेहतर बनाने के लिए क्या किया जा सकता है?
मॉडल को फिर से ट्रेन करें. हालांकि, सिर्फ़ उन सुविधाओं का इस्तेमाल करें जिनके बारे में आपको लगता है कि वे लेबल के लिए सबसे ज़्यादा सटीक अनुमान लगा सकती हैं.
कम सुविधाओं वाले मॉडल को फिर से ट्रेनिंग देकर, बेहतर अनुमान लगाने वाला मॉडल बनाया जा सकता है.
ऐसे मॉडल को ठीक नहीं किया जा सकता जिसका अनुमान बहुत दूर है.
ऐसे मॉडल को ठीक किया जा सकता है जिसका अनुमान गलत है. ज़्यादातर मॉडल को काम के अनुमान देने के लिए, कई राउंड की ट्रेनिंग की ज़रूरत होती है.
बड़े और अलग-अलग तरह के डेटासेट का इस्तेमाल करके, मॉडल को फिर से ट्रेन करें.
ज़्यादा उदाहरणों और वैल्यू की विस्तृत रेंज वाले डेटासेट पर ट्रेन किए गए मॉडल, बेहतर अनुमान दे सकते हैं. इसकी वजह यह है कि मॉडल में, फ़ीचर और लेबल के बीच के संबंध के लिए बेहतर सामान्य समाधान होता है.
ट्रेनिंग का कोई दूसरा तरीका आज़माएं. उदाहरण के लिए, अगर आपने सुपरवाइज़्ड ऐप्रोच का इस्तेमाल किया है, तो अनसुपरवाइज़्ड ऐप्रोच आज़माएं.
ट्रेनिंग के किसी दूसरे तरीके से बेहतर अनुमान नहीं मिलेंगे.
अब आप एमएल की अपनी यात्रा में अगला कदम उठाने के लिए तैयार हैं:
लोग और एआई की गाइडबुक. अगर आपको एआई का इस्तेमाल करने के लिए, Google के कर्मचारियों, इंडस्ट्री के विशेषज्ञों, और अकादमिक रिसर्च से मिले तरीकों, सबसे सही तरीकों, और उदाहरणों का एक सेट चाहिए.
समस्या को फ़्रेम करना. अगर आपको एमएल मॉडल बनाने और इस दौरान आम तौर पर होने वाली गड़बड़ियों से बचने के लिए, ऐसा तरीका चाहिए जिसे पहले से आज़माया जा चुका हो.
मशीन लर्निंग क्रैश कोर्स. अगर आपको एआई के बारे में ज़्यादा जानने के लिए, बारीकी से और खुद आज़माकर सीखने के लिए तैयार हैं.
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया."],[[["\u003cp\u003eThis page tests your understanding of core machine learning (ML) concepts through interactive questions.\u003c/p\u003e\n"],["\u003cp\u003eIt covers fundamental ML topics such as predictive power of features, supervised and unsupervised learning, and model training and evaluation.\u003c/p\u003e\n"],["\u003cp\u003eYou'll learn how to choose the right ML approach for different problems and assess the effectiveness of a trained model.\u003c/p\u003e\n"],["\u003cp\u003eLinks to further resources are provided to deepen your understanding of ML and its practical applications.\u003c/p\u003e\n"]]],[],null,["# Test Your Understanding\n\n\u003cbr /\u003e\n\nThe following questions help you solidify your understanding of core ML concepts.\n\nPredictive power\n----------------\n\nSupervised ML models are trained using datasets with labeled examples. The model\nlearns how to predict the label from the features. However, not every feature in\na dataset has predictive power. In some instances, only a few features act as\npredictors of the label. In the dataset below, use price as the label\nand the remaining columns as the features.\n\nWhich three features do you think are likely the greatest predictors for a car's price? \nMake_model, year, miles. \nA car's make/model, year, and miles are likely to be among the strongest predictors for its price. \nColor, height, make_model. \nA car's height and color are not strong predictors for a car's price. \nMiles, gearbox, make_model. \nThe gearbox isn't a main predictor of price. \nTire_size, wheel_base, year. \nTire size and wheel base aren't strong predictors for a car's price.\n\nSupervised and unsupervised learning\n------------------------------------\n\nBased on the problem, you'll use either a supervised or unsupervised approach.\nFor example, if you know beforehand the value or category you want to predict,\nyou'd use supervised learning. However, if you wanted to learn if your dataset\ncontains any segmentations or groupings of related examples, you'd use\nunsupervised learning.\n\nSuppose you had a dataset of users for an online shopping website, and it contained the following columns:\n\nIf you wanted to understand the types of users that visit the site, would you use supervised or unsupervised learning? \nUnsupervised learning. \nBecause we want the model to cluster groups of related customers, we'd use unsupervised learning. After the model clustered the users, we'd create our own names for each cluster, for example, \"discount seekers,\" \"deal hunters,\" \"surfers,\" \"loyal,\" and \"wanderers.\" \nSupervised learning because I'm trying to predict which class a user belongs to. \nIn supervised learning, the dataset must contain the label you're trying to predict. In the dataset, there is no label that refers to a category of user.\n\nSuppose you had an energy usage dataset for homes with the following columns:\n\nWhat type of ML would you use to predict the kilowatt hours used per year for a newly constructed house? \nSupervised learning. \nSupervised learning trains on labeled examples. In this dataset \"kilowatt hours used per year\" would be the label because this is the value you want the model to predict. The features would be \"square footage,\" \"location,\" and \"year built.\" \nUnsupervised learning. \nUnsupervised learning uses unlabeled examples. In this example, \"kilowatt hours used per year\" would be the label because this is the value you want the model to predict.\n\nSuppose you had a flight dataset with the following columns:\n\nIf you wanted to predict the cost of an airplane ticket, would you use regression or classification? \nRegression \nA regression model's output is a numeric value. \nClassification \nA classification model's output is a discrete value, normally a word. In this case, the cost of an airplane ticket is a numeric value. \nBased on the dataset, could you train a classification model to classify the cost of an airplane ticket as \"high,\" \"average,\" or \"low\"? \nYes, but we'd first need to convert the numeric values in the `airplane_ticket_cost` column to categorical values. \nIt's possible to create a classification model from the dataset. You would do something like the following:\n\n1. Find the average cost of a ticket from the departure airport to the destination airport.\n2. Determine the thresholds that would constitute \"high,\" \"average,\" and \"low\".\n3. Compare the predicted cost to the thresholds and output the category the value falls within. \nNo. It's not possible to create a classification model. The `airplane_ticket_cost` values are numeric not categorical. \nWith a little bit of work, you could create a classification model. \nNo. Classification models only predict two categories, like `spam` or `not_spam`. This model would need to predict three categories. \nClassification models can predict multiple categories. They're called multiclass classification models.\n\nTraining and evaluating\n-----------------------\n\nAfter we've trained a model, we evaluate it by using a dataset with labeled examples\nand compare the model's predicted value to the label's actual value.\n\nSelect the two best answers for the question. \nIf the model's predictions are far off, what might you do to make them better? \nRetrain the model, but use only the features you believe have the strongest predictive power for the label. \nRetraining the model with fewer features, but that have more predictive power, can produce a model that makes better predictions. \nYou can't fix a model whose predictions are far off. \nIt's possible to fix a model whose predictions are off. Most models require multiple rounds of training until they make useful predictions. \nRetrain the model using a larger and more diverse dataset. \nModels trained on datasets with more examples and a wider range of values can produce better predictions because the model has a better generalized solution for the relationship between the features and the label. \nTry a different training approach. For example, if you used a supervised approach, try an unsupervised approach. \nA different training approach would not produce better predictions.\n\nYou're now ready to take the next step in your ML journey:\n\n- [People + AI Guidebook](https://pair.withgoogle.com/guidebook/). If you're\n looking for a set of methods, best practices and examples presented by\n Googlers, industry experts, and academic research for using ML.\n\n- [Problem Framing](/machine-learning/problem-framing). If you're looking for\n a field-tested approach for creating ML models and avoiding common pitfalls\n along the way.\n\n- [Machine Learning Crash Course](/machine-learning/crash-course). If you're\n ready for an in-depth and hands-on approach to learning more about ML."]]