機器學習實務:圖片分類
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
練習 1:建構 Convnet,用於貓/狗分類
在本練習中,您將實際操作卷積神經網路。您將從頭開始建構圖片分類器,以便區分貓咪和狗狗的圖片:
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-27 (世界標準時間)。
[null,null,["上次更新時間:2025-07-27 (世界標準時間)。"],[[["\u003cp\u003eThis exercise provides hands-on experience with convolutional neural networks (CNNs).\u003c/p\u003e\n"],["\u003cp\u003eYou will build an image classifier from scratch to differentiate between images of cats and dogs.\u003c/p\u003e\n"],["\u003cp\u003eThe exercise involves practical application of CNNs for image classification tasks.\u003c/p\u003e\n"]]],[],null,["# ML Practicum: Image Classification\n\n\u003cbr /\u003e\n\n### Exercise 1: Build a Convnet for Cat-vs.-Dog Classification\n\nIn this exercise, you'll get practical, hands-on experience with\nconvolutional neural networks. You'll build an image classifier from\nscratch to distinguish photos of cats from photos of dogs: \n[Launch exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/pc/exercises/image_classification_part1.ipynb?utm_source=practicum-IC&utm_campaign=colab-external&utm_medium=referral&hl=en&utm_content=imageexercise1-colab)"]]