Tận dụng các mô hình đã qua đào tạo trước
Việc đào tạo một mạng nơron tích chập để thực hiện các tác vụ phân loại hình ảnh thường yêu cầu một lượng lớn dữ liệu đào tạo và có thể tốn rất nhiều thời gian để hoàn thành. Nhưng nếu bạn có thể tận dụng các mô hình hình ảnh hiện có được đào tạo về các tập dữ liệu khổng lồ, chẳng hạn như qua TensorFlow-Slim và điều chỉnh các mô hình đó để sử dụng trong các tác vụ phân loại của riêng mình thì sao?
Một kỹ thuật phổ biến để tận dụng các mô hình đã huấn luyện trước là lấy tính năng: truy xuất các bản trình bày trung gian do mô hình đã huấn luyện trước tạo và sau đó đưa các đại diện này vào một mô hình mới làm dữ liệu đầu vào. Khi liên kết một nguồn dữ liệu như Để tăng hiệu suất khi sử dụng tính năng trích xuất tính năng với một mô hình đã đào tạo trước, các kỹ sư thường điều chỉnh các thông số về trọng số áp dụng cho các tính năng được trích xuất.
Để tìm hiểu sâu hơn về tính năng trích xuất tính năng và tinh chỉnh dữ liệu khi sử dụng các mô hình được huấn luyện trước, hãy xem Bài tập sau đây.