Cómo prevenir el sobreajuste
Al igual que con cualquier modelo de aprendizaje automático, un problema clave a la hora de entrenar una red neuronal convolucional es el sobreajuste: un modelo tan alineado a las características específicas de los datos de entrenamiento que es incapaz de hacer generalizaciones ante ejemplos nuevos. Estas son dos técnicas para evitar el sobreajuste cuando se compila una CNN:
- Aumento de datos: Se incrementa de forma artificial la diversidad y cantidad de ejemplos de entrenamiento mediante transformaciones aleatorias en imágenes existentes para crear un conjunto de variantes nuevas (consulta la Figura 7). El aumento de datos es especialmente útil cuando el conjunto de datos de entrenamiento original es relativamente pequeño.
- Regularización de retirados: Se quitan de forma aleatoria unidades de la red neuronal durante un paso de gradiente de entrenamiento.
Figura 7: Aumento de datos en una sola imagen de un perro (extracto del conjunto de datos de perros frente a gatos disponible en Kaggle) Izquierda: Imagen original de un perro extraída del conjunto de entrenamiento. Derecha: Nueve imágenes nuevas generadas a partir de la imagen original mediante transformaciones aleatorias.