Resumen
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Definir un problema en términos de AA es un proceso de dos pasos:
Para verificar que el AA sea un buen enfoque, haz lo siguiente:
- Comprende el problema.
- Identifica un caso de uso claro.
- Comprende los datos.
Para definir el problema en términos de AA, haz lo siguiente:
- Define el resultado ideal y el objetivo del modelo.
- Identifica el resultado del modelo.
- Define las métricas de éxito.
Estos pasos pueden ahorrar tiempo y recursos, ya que establecen objetivos claros y proporcionan un marco de trabajo compartido para trabajar con otros profesionales de AA.
Usa los siguientes ejercicios para definir un problema de AA y formular una solución:
IA responsable
Cuando implementes soluciones de AA, siempre sigue los Principios de la IA responsable de Google.
Si quieres una introducción práctica para mejorar la equidad y mitigar el sesgo en el AA, consulta el módulo de equidad de MLCC.
Sigue aprendiendo
Más recursos de aprendizaje sobre AA
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-08-04 (UTC)
[null,null,["Última actualización: 2025-08-04 (UTC)"],[[["\u003cp\u003eFraming a Machine Learning (ML) problem involves understanding the problem, identifying a use case, understanding the data, and then defining the desired outcome, model output, and success metrics.\u003c/p\u003e\n"],["\u003cp\u003eThese steps help in setting clear objectives and establishing a collaborative framework when working with other ML professionals.\u003c/p\u003e\n"],["\u003cp\u003eApplying ML can raise privacy and ethical issues which need careful consideration before deploying a model, using available resources to mitigate these risks.\u003c/p\u003e\n"],["\u003cp\u003eFurther learning resources are available on data preparation, feature engineering, testing, debugging in ML, and responsible AI practices.\u003c/p\u003e\n"]]],[],null,["# Summary\n\n\u003cbr /\u003e\n\nFraming a problem in terms of ML is a two-step process:\n\n1. Verify that ML is a good approach by doing the following:\n\n - Understand the problem.\n - Identify a clear use case.\n - Understand the data.\n2. Frame the problem in ML terms by doing the following:\n\n - Define the ideal outcome and the model's goal.\n - Identify the model's output.\n - Define success metrics.\n\nThese steps can save time and resources by setting clear goals and providing a\nshared framework for working with other ML practitioners.\n\nUse the following exercises to frame an ML problem and formulate a solution:\n\n- [Framing an ML problem](/machine-learning/problem-framing/try-it/framing-exercise)\n- [Formulating a solution](/machine-learning/problem-framing/try-it/formulate-exercise)\n\nResponsible AI\n--------------\n\nWhen implementing ML solutions, always follow\n[Google's Responsible AI Principles](https://ai.google/responsibility/principles).\n\nFor a hands-on introduction for improving fairness and mitigating bias in\nML, see the [MLCC Fairness module](https://developers.google.com/machine-learning/crash-course/fairness).\n\nKeep learning\n-------------\n\n### More ML learning resources\n\n- [Data Preparation and Feature Engineering](/machine-learning/data-prep)\n- [Testing and Debugging in Machine Learning](/machine-learning/testing-debugging)\n- [People + AI Research](https://pair.withgoogle.com/)"]]