खास जानकारी वाली रिपोर्ट में ग़ैर-ज़रूरी आवाज़ों को समझना

जानें कि शोर का क्या मतलब है, इसे कहां जोड़ा जाता है, और यह आपके मेज़रमेंट के तरीकों पर कैसे असर डालता है.

खास जानकारी वाली रिपोर्ट, एग्रीगेट की जा सकने वाली रिपोर्ट के एग्रीगेट होने पर जनरेट होती हैं. जब कलेक्टर, कलेक्ट करने वाली रिपोर्ट का बैच बनाते हैं और उन्हें एग्रीगेशन सेवा प्रोसेस करती है, तो नतीजों की खास जानकारी वाली रिपोर्ट में ग़ैर-ज़रूरी डेटा शामिल किया जाता है. उपयोगकर्ता की निजता को सुरक्षित रखने के लिए, ग़ैर-ज़रूरी आवाज़ें कम कर दी गई हैं. इस प्रोसेस का मकसद ऐसा फ़्रेमवर्क बनाना है जो डिफ़रेंशियली प्राइवेट मेज़रमेंट के साथ काम कर सके.

खास जानकारी वाली फ़ाइनल रिपोर्ट में शोर को जोड़ा जाता है.

समरी रिपोर्ट में गै़र-ज़रूरी डेटा के बारे में जानकारी

हालांकि, ग़ैर-ज़रूरी आवाज़ें जोड़ना, आम तौर पर विज्ञापनों की परफ़ॉर्मेंस का आकलन करने का हिस्सा नहीं होता है. हालांकि, कई मामलों में शोर जोड़ने से, नतीजों को समझने के आपके तरीके पर कोई खास असर नहीं पड़ेगा.

इसके बारे में नीचे दिए गए तरीके से सोचें: अगर आपके डेटा में ग़ैर-ज़रूरी जानकारी शामिल नहीं थी, तो क्या आप इस डेटा के आधार पर सही फ़ैसला ले पाएंगे?

उदाहरण के लिए, क्या विज्ञापन देने वाला कोई व्यक्ति इस तथ्य के आधार पर अपनी कैंपेन रणनीति या बजट में बदलाव कर पाएगा कि कैंपेन A को 15 कन्वर्ज़न मिले थे और कैंपेन B को 16 कन्वर्ज़न मिले थे?

अगर जवाब नहीं है, तो शोर का कोई मतलब नहीं है.

आपको अपने एपीआई के इस्तेमाल को इस तरह से कॉन्फ़िगर करना होगा कि:

  1. ऊपर दिए गए सवाल का जवाब हां है.
  2. शोर को इस तरह से मैनेज किया जाता है कि आप कुछ डेटा के आधार पर फ़ैसला लेने की क्षमता पर कोई खास असर नहीं डालते. इसके लिए, यह तरीका अपनाया जा सकता है: कन्वर्ज़न की अनुमानित कम से कम संख्या के लिए, इकट्ठा की गई मेट्रिक में नॉइज़ को तय प्रतिशत से कम रखना हो.

इस सेक्शन और यहां दिए गए सेक्शन में, हम दो लक्ष्यों को हासिल करने की रणनीतियों के बारे में बताएंगे.

मुख्य सिद्धांत

एग्रीगेशन सेवा हर बार जवाब की हर वैल्यू में एक बार नॉइज़ जोड़ती है. इसका मतलब है कि जब भी खास जानकारी वाली रिपोर्ट का अनुरोध किया जाता है, तब यह हर कुंजी में एक बार शामिल होती है.

नॉइज़ वैल्यू की ये वैल्यू, खास प्रॉबबिलिटी डिस्ट्रिब्यूशन से किसी भी क्रम में ली जाती हैं. इनके बारे में नीचे बताया गया है.

शोर पर असर डालने वाले सभी एलिमेंट, दो मुख्य सिद्धांतों पर निर्भर करते हैं.

  1. नॉइज़ डिस्ट्रिब्यूशन (नीचे दी गई जानकारी), एक जैसा ही है. इससे कोई फ़र्क़ नहीं पड़ता कि जवाब की वैल्यू कम है या ज़्यादा. इसलिए, इस वैल्यू के मुकाबले समरी की वैल्यू जितनी ज़्यादा होगी, नॉइज़ की संभावना उतनी ही कम होगी.

    उदाहरण के लिए, मान लीजिए कि 20,000 डॉलर की कुल एग्रीगेट की गई परचेज़ वैल्यू और 200 डॉलर की कुल एग्रीगेट की गई परचेज़ वैल्यू, दोनों एक ही डिस्ट्रिब्यूशन से चुनी गई नॉइज़ के हिसाब से तय होती हैं.

    मान लें कि इस डिस्ट्रिब्यूशन का नॉइज़, करीब-करीब -100 और +100 के बीच होता है.

    • 20,000 डॉलर की खरीदारी की वैल्यू के लिए, नॉइज़ 0 से 100/20,000=0.5% के बीच होता है.
    • 200 डॉलर की परचेज़ वैल्यू के लिए नॉइज़, 0 से 100/200=50% के बीच होता है.

    इस वजह से, 200 डॉलर की कुल वैल्यू के मुकाबले 20,000 डॉलर की एग्रीगेट की गई परचेज़ वैल्यू पर नॉइज़ का असर कम हो सकता है. दूसरे शब्दों में कहें, तो 20,000 डॉलर में कम शोर होने की संभावना होती है. इस वजह से, सिग्नल-टू-नॉइज़ रेशियो ज़्यादा हो सकता है.

    ज़्यादा एग्रीगेट की गई वैल्यू में, गै़र-ज़रूरी डेटा का असर कम होता है.

    इसके कुछ अहम व्यावहारिक नतीजे हैं, जिनके बारे में अगले सेक्शन में बताया गया है. यह तरीका, एपीआई के डिज़ाइन का हिस्सा है और इसके काम के नतीजे लंबे समय तक रहेंगे. विज्ञापन टेक्नोलॉजी से जुड़ी अलग-अलग रणनीतियों को डिज़ाइन और उनका आकलन करने में, Google Analytics अहम भूमिका निभाता रहेगा.

  2. नॉइज़ निकालने के लिए, समरी वैल्यू का कोई असर नहीं पड़ता, लेकिन डिस्ट्रिब्यूशन कई पैरामीटर पर निर्भर करता है. अलग-अलग तरह की सुविधाओं/निजता से जुड़े अडजस्टमेंट का आकलन करने के लिए, ऑरिजिन ट्रायल के दौरान विज्ञापन टेक्नोलॉजी, इनमें से एक पैरामीटर epsilon में बदलाव कर सकती हैं. हालांकि, एप्सिलॉन को अस्थायी तौर पर ट्वीक करने की क्षमता को कुछ समय के लिए इस्तेमाल करने पर विचार करें. हम आपके इस्तेमाल के उदाहरणों और ऐप्स के मान के बारे में आपकी राय का स्वागत करते हैं, जो अच्छी तरह से काम करते हैं.

हालांकि, विज्ञापन टेक्नोलॉजी से जुड़ी सेवा देने वाली कंपनी, शोर जोड़ने के तरीकों पर सीधा कंट्रोल नहीं रखती. हालांकि, वह अपने मेज़रमेंट डेटा पर नॉइज़ के असर पर असर डाल सकती है. अगले सेक्शन में, हम आपको बताएंगे कि शोर का इस्तेमाल कैसे किया जा सकता है.

शुरू करने से पहले, आइए शोर को लागू करने के तरीके पर बारीकी से नज़र डालें.

ज़ूम इन करना: शोर को कैसे लागू किया जाता है

एक नॉइज़ डिस्ट्रिब्यूशन

शोर का आकलन करने के लिए, लाप्लास डिस्ट्रिब्यूशन का इस्तेमाल किया जाता है. इसके लिए, इन पैरामीटर का इस्तेमाल किया जाता है:

  • 0 का मीन (μ). इसका मतलब है कि ज़्यादा संभावित नॉइज़ वैल्यू 0 है (कोई नॉइज़ नहीं जोड़ा गया). नॉइज़ वैल्यू, ओरिजनल वैल्यू से कम होने की संभावना है, क्योंकि नॉइज़ वैल्यू बड़ी है. इसे कभी-कभी अनबायस्ड भी कहा जाता है.
  • b = CONTRIBUTION_BUDGET / epsilon का स्केल पैरामीटर.
    • CONTRIBUTION_BUDGET की जानकारी ब्राउज़र में मौजूद है.
    • एग्रीगेशन सर्वर में epsilon तय की गई है.

नीचे दिया गया डायग्राम, μ=0, b = 20 वाले लाप्लेस डिस्ट्रिब्यूशन के लिए प्रॉबबिलिटी डेंसिटी फ़ंक्शन को दिखाता है:

μ=0, b = 20 वाले लाप्लास डिस्ट्रिब्यूशन के लिए प्रॉबबिलिटी डेंसिटी फ़ंक्शन

रैंडम नॉइज़ वैल्यू, एक नॉइज़ डिस्ट्रिब्यूशन

मान लें कि कोई विज्ञापन टेक्नोलॉजी, दो एग्रीगेशन कुंजियों, key1 और key2 के लिए खास जानकारी वाली रिपोर्ट का अनुरोध करती है.

एग्रीगेशन सेवा, नॉइज़ के बराबर डिस्ट्रिब्यूशन के बाद दो ग़ैर-ज़रूरी वैल्यू x1 और x2 चुनती है. कुंजी1 के सारांश मान में x1 को जोड़ा जाता है और कुंजी2 के लिए सारांश मान में x2 को जोड़ा जाता है.

डायग्राम में, नॉइज़ वैल्यू को एक जैसा दिखाया जाएगा. यह आसान तरीका है; असल में, नॉइज़ की वैल्यू अलग-अलग होंगी, क्योंकि उन्हें डिस्ट्रिब्यूशन से किसी भी क्रम में निकाला जाता है.

इससे पता चलता है कि नॉइज़ की सभी वैल्यू, एक ही डिस्ट्रिब्यूशन से मिलती हैं. साथ ही, ये वैल्यू पर लागू की गई समरी वैल्यू से अलग होती हैं.

शोर के अन्य गुण

नॉइज़ को जवाब की हर वैल्यू पर लागू किया जाता है. इसमें खाली वैल्यू (0) भी शामिल हैं.

यहां तक कि जवाब वाले खाली वैल्यू में भी गड़बड़ी हो सकती है.

उदाहरण के लिए, भले ही किसी कुंजी की सही जवाब वैल्यू 0 हो, लेकिन इस कुंजी की खास जानकारी वाली रिपोर्ट में आपको नॉइज़ की खास जानकारी के तौर पर जो वैल्यू दिखेगी वह 0 नहीं होगी.

शोर की मात्रा पॉज़िटिव या नेगेटिव नंबर हो सकती है.

सकारात्मक और नकारात्मक शोर के उदाहरण.

उदाहरण के लिए, अगर शोरगुल से पहले 3,27,000 रुपये की खरीदारी की जाती है, तो नॉइज़ +6,000 या -6,000 हो सकते हैं. ये वैल्यू अपने हिसाब से तय की गई हैं.

शोर का पता लगाया जा रहा है

शोर के मानक विचलन की गणना करना

नॉइज़ का स्टैंडर्ड डीविएशन है:

b*sqrt(2) = (CONTRIBUTION_BUDGET / epsilon)*sqrt(2)
उदाहरण

एप्सिलॉन = 10 के साथ, नॉइज़ का स्टैंडर्ड डीविएशन यह होता है:

b*sqrt(2) = (CONTRIBUTION_BUDGET / epsilon)*sqrt(2) = (65,536/10)*sqrt(2) = 9,267

मेज़रमेंट में अंतर ज़्यादा होने पर आकलन करना

आपको एग्रीगेशन सेवा से हर वैल्यू आउटपुट में जोड़े गए नॉइज़ के स्टैंडर्ड डेविएशन का पता चल जाएगा. इसलिए, तुलना के लिए सही थ्रेशोल्ड तय किए जा सकते हैं. इससे यह पता लगाया जा सकता है कि परफ़ॉर्मेंस में अंतर की वजह, नॉइज़ की वजह से तो नहीं है.

उदाहरण के लिए, अगर किसी वैल्यू में जोड़ा गया नॉइज़ करीब +/- 10 (स्केलिंग के लिहाज़ से) है और दो कैंपेन के बीच वैल्यू में अंतर 100 से ज़्यादा है, तो इस नतीजे पर पहुंचना आसान है. हर कैंपेन के बीच मेज़र की गई वैल्यू में अंतर, सिर्फ़ शोर की वजह से नहीं है.

लोगों से जुड़ें और सुझाव, शिकायत या राय शेयर करें

आपके पास इस एपीआई में हिस्सा लेने और इसका इस्तेमाल करने का विकल्प है.

अगले चरण