2017 |IEEE Blocks and Beyond Workshop

Tips for Creating a Block Language with Blockly

Erik Pasternak
Kids Coding
Google
Mountain View, CA, USA
epastern@google.com

Abstract—Blockly is an open source library that makes it easy
to add block based visual programming to an app. It is designed
to be flexible and supports a large set of features for different
applications. It has been used for programming animated char-
acters on a screen; creating story scripts; controlling robots;
and even generating legal documents. But Blockly is not itself
a language; developers who use Blockly create their own block
languages. When developers create an app using Blockly, they
should carefully consider the style, which blocks to use, and what
APIs and language features are right for their audience.

Index Terms—Education; visual programming; computer sci-
ence; developer tools; language design

I. INTRODUCTION
A. Visual Programming Languages
A Visual Programming Language (VPL) is a programming
language that allows a user to create programs primarily

through graphical manipulation [1]. Some common interaction
models in VPLs are:

o Dragging blocks around a screen (e.g. Scratch [2])

o Using flow diagrams, state diagrams, and other compo-
nent wiring (e.g. Pure Data [3])

« Using icons or non-text representation (e.g. Kodu [4])

Many VPLs still use text, or combine text with visual repre-
sentations.

Every VPL has a grammar and a vocabulary. Together they
define the set of concepts that can be easily expressed with
the language. The grammar is the visual metaphor used by
the language: blocks, wires, etc. The vocabulary is the set of
icons, blocks, or other components that allow you to express
ideas.

B. The Blockly Library

Blockly is an open source developer library for adding block
based coding to an app. It was first released in May 2012
and remains under active development as of 2017. Blockly
provides a block editor Ul and a framework for generating
code in text-based languages. Out of the box it includes
generators for JavaScript, Lua, PHP, Dart, and Python; custom
generators for other text languages may also be created.

The core library is written in JavaScript and can be used
as part of any website or embedded in a WebView. Native
Android and iOS versions of Blockly are also available and
provide a subset of features for building high performance
mobile apps.

978-1-5386-2480-7/17/$31.00 ©2017 IEEE

Rachel Fenichel
Kids Coding
Google
Mountain View, CA, USA
fenichel @google.com

Andrew N. Marshall
Kids Coding
Google
Mountain View, CA, USA
marshalla@google.com

As a library, Blockly is neither a full language nor an app
ready for end users. It provides a grammar and a representation
for programming that developers can use in their apps. Code
is represented by blocks, which may be dragged around the
screen. The blocks have connection points where they can be
attached to other blocks and chained together.

But Blockly does not provide a full vocabulary of blocks or
a runtime environment. Developers need to integrate Blockly
with some form of output, build their vocabulary, and decide
how the generated code will run.

Building a vocabulary for a block language still depends
heavily on context. The level of abstraction and resemblance
to other languages may vary dramatically, even between apps
using Blockly. Blocks that work in one app often won’t work
with a different app runtime or in different contexts, such as
school vs home use.

Bee

ﬁ
!

picture:
legs:

@

£
3
g
G

Fig. 1. Blockly Games [5] uses Blockly to teach basic concepts. Left: blocks
for solving a maze. Right: blocks for an animal matching game.

In this paper, we will discuss how to think about defining
an appropriate set of blocks for an application and audience.
We’ll focus on blocks that Blockly supports and use existing
apps built with Blockly as examples, though much of this
discussion is useful for language and app design in general.

II. QUESTIONS TO ASK YOURSELF

Before you start writing your app or creating blocks you
should take some time to figure out who you are building for
and what your overall goals are. There are many different
block paradigms, each of which works best under specific
conditions.

21

A. Audience

Who are you building for? Blocks for middle school stu-
dents to control a robot will look very different from blocks
for an IT tech to configure a router. Here are a few questions
to start with when considering audience:

o What should they get out of using your app?

o How old is your audience?

« What is the reading level of your audience?

o Will they use your app by itself or as part of a lesson

plan?

o How much experience do they have with technology?

« Have they seen similar apps before?

o How quickly do they need to learn to use your app?

o Will they use your app once or keep coming back to it?

B. Scope

It’s easy to end up with too many blocks and overwhelm
your users. In most cases you should keep the set of available
blocks small to avoid frustrating your users. Put another way,
make things as simple as possible, and then even simpler. Here
are a few questions to ask when considering scope:

o What can users do with your app?

o What can’t users do with your app?

o What are the user’s goals?

o What does each block enable the user to do?

o Can the same action be done with more than one block?

« How long does it take a user to find each block/category

when they need it?

o Can a user understand what each block does by looking

at it?

o Can a user understand what each block does by running

it?

There are some cases where you want to intentionally
provide a large number of blocks. App Inventor [6] is an
example of using a block language to give easier access to
a complex problem—in this case building an Android app. If
your app falls in this category, look for other ways to help
with discoverability like App Inventor’s block search.

It is also possible to add blocks and categories dynamically
as the scope of your app expands. If your app uses hardware,
you can only show blocks for the currently attached hardware
or let your user tell you which components they have.

III. CHOOSING YOUR VOCABULARY

Even among blocks there are many ways to define a
language. The three styles we most frequently see being used
for block languages are: icons, natural language, and computer
language.

A. Icons

Iconic blocks rely on images instead of text to convey what
the blocks do. They may also include numbers and small
amounts of text. Iconic blocks can be effective for reaching
pre-literate users: children who have not learned to read can
still use them to write code. And they can be used when local
translations are unavailable.

22

-

]
" s

Fig. 2. Code a Snowflake [7] uses iconic blocks with Scratch Blocks [8], a
fork of Blockly which includes horizontal and vertical blocks.

While icons can be easier than text for users to understand,
icons also have more limitations on what can be expressed.
It can be hard to convey abstract concepts with icons, and
conditionals can be hard to indicate without text. Even clear
icons can be difficult for a user to remember if there are too
many of them [9]. For most uses a small set of simple blocks
is appropriate.

Iconic languages may be presented horizontally or verti-
cally. Choose based on your screen real estate and the logical
flow of your app; bear in mind that horizontal blocks should be
rendered right to left (RTL) when your users speak a language
that is written RTL.

B. Natural Language

Natural language blocks use standard written sentences for
most of their blocks. Blocks that use readable sentences can
be used to express more complex concepts than icons, while
still feeling familiar and intuitive for users. Sentences are
also easier to read and more understandable than code for
many users. If well designed, users of any age can find
these experiences fun and challenging. Scratch [2], a popular
creative coding app for kids and teens, is a great example of
a block language in this category with long term appeal.

play sound meow v until done

Fig. 3. Blocks from Scratch [2] which read "When flag clicked, forever, play
sound meow until done.”

Grammar, word choice, and context will all affect how well
the user understands your blocks. In general you should use
language that is natural for your users and avoid jargon. An
exception is if your goal is to transition your users to a text
language, in which case some jargon may be appropriate.

Be judicious in your word choice, and include simple and
accessible documentation for each block.

C. Computer Language

Another approach is to design blocks that look just like an
existing text language. This still removes the most common
pain points such as syntax and discoverability [10], [11], and
may make the transition to text easier for some students [12],
[13].

while (| '(TTED |){
@) if(

Fig. 4. Blocks from Blockly Games Pond [S]. The text of the blocks is
JavaScript, including all of the syntax.

While it can be tempting to provide users with the full
power of your target language in block form, doing so can
be overwhelming. We recommend carefully choosing which
APIs you make accessible. For instance, blocks that look like
JavaScript may want to stick to the “good parts” [14].

Avoid APIs that are obscure, hard to understand, or error
prone even when used by experienced developers. Providing
documentation for all APIs that you use is also a good way
to introduce users to online resources for coding.

IV. OTHER CONSIDERATIONS
A. Consistency

Users will have an easier time with your block language if
you are consistent in your use of language and design patterns.
We suggest that you:

o Use color to reinforce similarities between blocks.

o Use the same sentence structure across blocks.

o Use the same input order when different blocks use the
same inputs.

o Use the same word everywhere when referring to the
same thing.

B. Defaults

Many text languages will fail to run if no value is provided
(e.g. 7var i =;”). For most apps it is better to avoid these errors
by providing default values, either explicitly or implicitly.

Explicit defaults include a visible default value for the input.
They are easy for users to edit and show what kind of input is
expected. In Blockly these explicit defaults are called shadow
blocks. Users can replace them with other blocks; when a
covering block is removed, the shadow block reappears. For
example, Blockly’s repeat block uses a default block to make

it easy to loop a set number of times and shows that a number
is expected:

Fig. 5. A repeat 10 times block from Blockly. The 10 can be edited directly
or replaced with another block.

You can also provide an implicit default, by leaving an input
blank and handling the default when generating or running the
code. Implicit defaults may be better when the default doesn’t
do anything useful, such as in the block below. The empty
space prompts the user to put something there. Scratch has
several more examples of defaults [15].

for each item (B3 in list

Fig. 6. A “for each” block from Blockly. The block input will default to
an empty list, but since that won’t do anything, the input is left empty to
encourage the user to add a block.

C. Testing

Even if you carefully consider all of the trade-offs for your
language, there is no substitute for putting it in front of users
and seeing what they do. Starting early with paper or other
low-fidelity prototypes can catch most problems [16] and it’s
easier to make changes when you’re less invested in a specific
solution [17]. And A-B testing alternative blocks or subsets of
blocks can help find the vocabulary that makes the most sense
to your users.

V. CLOSING

Blockly lets you easily create a drag and drop program-
ming app, but designing a block language requires significant
consideration. In this paper we presented some questions to
guide your design, and some best practices to follow. Each
application has a different audience and a different set of goals;
allow that to drive the design of your blocks.

There is a lot more to designing a block language than
discussed here. There are plenty of other resources for learning
about API design, many of which apply to block languages as
well.

Other developers can also be great resources. Don’t hesitate
to ask a question on Blockly’s mailing list [18]!

REFERENCES

[1] Visual Programming Language. Retrieved July 17, 2017 from
https://en.wikipedia.org/wiki/Visual_programming_language

[2] Scratch - Imagine, Program, Share. Retrieved July 16, 2017, from
https://scratch.mit.edu/

[3] Pure Data. Retrieved July 17, 2017, from https://puredata.info/

23

[4]
[5]
[6]
[7]
[8]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

[18]

Kodu. (2010, April 5). Retrieved July 17, 2017, from
https://www.microsoft.com/en-us/research/project/kodu/

Blockly Games, Retrieved July 16, 2017, from https://blockly-
games.appspot.com/

MIT App Inventor. Retrieved July 16, 2017, from
http://appinventor.mit.edu/explore/

Code a Snowflake. (2016, December 4). Retrieved July 16, 2017, from
https://santatracker.google.com/snowflake.html

LLK/scratch-blocks. Retrieved July 16, 2017, from
https://github.com/Ilk/scratch-blocks

G.A. Miller, "The magical number seven, plus or minus two: some limits
on our capacity for processing information.” Psychological Review.
1956;63(2):81-97. doi:10.1037/h0043158.

M.C. Jadud, A first look at novice compilation behaviour using bluej,”
Computer Science Education, vol. 15, no. 1, pp. 2540, 2005.

AlJ. Ko, B.A. Myers, and H.H. Aung, ”Six learning barriers in end-user
programming systems,” in 2004 IEEE Symposium on Visual Languages
and Human Centric Computing, 2004, pp. 199 206.

C. Kelleher and R. Pausch, "Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83137, 2005.
Weintrop, D. Minding the gap between blocks-based and text-based
programming. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (2015), ACM, 720.

D. Crockford, JavaScript : The Good Parts. Sebastopol :O’Reilly, 2008.
Print.

Default Value. Retrieved July 16, 2017, from
https://wiki.scratch.mit.edu/wiki/Default_Value

N. Heaton, "What’s wrong with the user interface: how rapid prototyping
can help,” IEE Colloquium on Software Prototyping and Evolutionary
Development, London, 1992, pp. 7/1-7/5.

E. Gerber and M. Carroll, (2012). ”The psychological experience of
prototyping,” Design Studies, 33(1), 2012, pp. 64-84.

blockly @googlegroups.com Retrieved July 10, 2017, from
https://groups.google.com/forum/#!forum/blockly

24

