1. 소개
이 Codelab에서는 선형 회귀를 사용하여 클릭당비용을 예측하는 모델을 만드는 방법을 알아봅니다.
기본 요건
이 Codelab을 완료하려면 다음이 필요합니다.
이 Codelab을 완료하려면 모델을 구축하기에 충분한 고품질 캠페인 데이터가 필요합니다.
2. 임시 테이블 만들기
다음 쿼리를 실행합니다.
CREATE TABLE
linear_regression_example_data
AS(
WITH all_data AS (
SELECT
imp.user_id as user_id,
ROW_NUMBER() OVER(PARTITION BY imp.user_id) AS rowIdx,
imp.browser AS browser_name,
gender_name AS gender_name,
age_group_name AS age_group_name,
DATETIME(TIMESTAMP_MICROS(
imp.query_id.time_usec), "America/Los_Angeles") as impression_time,
clk.advertiser_click_cost_usd AS label
FROM adh.google_ads_impressions imp
INNER JOIN adh.google_ads_clicks clk USING (impression_id)
LEFT JOIN adh.gender ON demographics.gender = gender_id
LEFT JOIN adh.age_group ON demographics.age_group = age_group_id
)
# Need just one user ID or regression won't work
SELECT
label,
browser_name,
gender_name,
age_group_name,
# Although BQML could divide impression_time into several useful variables on
# its own, it may attempt to divide it into too many features. As a best
# practice extract the variables that you think will be most helpful.
# The output of impression_time is a number, but we care about it as a
# category, so we cast it to a string.
CAST(EXTRACT(DAYOFWEEK FROM impression_time) AS STRING) AS day_of_week,
CAST(EXTRACT(HOUR FROM impression_time) AS STRING) AS hour,
FROM
all_data
WHERE
rowIdx = 1 # This ensures that there's only 1 row per user.
AND
label IS NOT NULL
AND
gender_name IS NOT NULL
AND
age_group_name IS NOT NULL
);
3. 모델 만들기 및 학습
테이블 만들기 단계를 모델 만들기 단계와 분리하는 것이 좋습니다.
이전 단계에서 만든 임시 테이블에 아래의 쿼리를 실행합니다. 시작일과 종료일은 임시 테이블의 데이터를 기반으로 추론되므로 걱정하지 마세요.
CREATE OR REPLACE
MODEL `example_linear`
OPTIONS(
model_type = 'adh_linear_regression'
)
AS (
SELECT *
FROM
tmp.linear_regression_example_data
);
SELECT * FROM ML.EVALUATE(MODEL `example_linear`)
행 | mean_absolute_error | mean_squared_error | mean_squared_log_error | median_absolute_error | r2_score | explained_variance |
1 | 0.11102380666874107 | 0.019938972461569476 | 0.019503393448234131 | 0.091792024503562136 | -9.8205955364568478 | -9.7975398794423025 |