关于 Google 机器学习术语表的常见问题解答
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
本文档提出并解答了有关 Google 机器学习术语表的几个关键问题。
如何提议新字词?
点击“机器学习术语表”顶部或底部的发送反馈按钮。然后,告诉我们缺少哪些字词。
我可以举报含糊不清的定义吗?
当然可以!点击发送反馈按钮,告诉我们。
您会通过电子邮件回复我的反馈吗?
很抱歉,我们无法做到这一点,但我们确实会审核所有反馈。
定义由谁撰写?
Google 团队由技术文案撰写者、研究人员和软件工程师组成,负责撰写和审核每个定义。
您多久添加一次新定义?
我们每年会发布三到四批新字词。此外,我们还会经常对现有定义进行细微更改。
您是否提供子术语表?
可以,您可以从顶部导航栏的术语表下拉菜单中选择主题,以过滤术语表。例如,聚类子术语表重点介绍与聚类相关的术语。
目标受众群体是哪些人?
“基础知识”术语(标有 🐣? 图标)面向机器学习新手。另一方面,我们会针对有经验的机器学习从业者使用某些高级术语。
为什么我所在组织对术语的定义与您的术语表不同?
在机器学习等相对较新的领域中,这是一个非常常见的问题。我们只能表示歉意,并保证机器学习术语可能永远不会完全标准化。
为什么有些定义读起来像百科全书条目?
对于某些术语,只需一个句子即可定义清楚,但对于其他术语,则需要提供详尽的说明、图片、比较、示例、数学公式等。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-02-03。
[null,null,["最后更新时间 (UTC):2025-02-03。"],[[["\u003cp\u003eThe Google Machine Learning Glossary allows users to propose new terms or report confusing definitions via the \u003cstrong\u003eSend Feedback\u003c/strong\u003e button.\u003c/p\u003e\n"],["\u003cp\u003eA team of Google technical writers, researchers, and software engineers are responsible for creating and maintaining the glossary's definitions.\u003c/p\u003e\n"],["\u003cp\u003eNew terms are added to the glossary in batches three to four times a year, and existing definitions are frequently updated.\u003c/p\u003e\n"],["\u003cp\u003eThe glossary can be filtered by topic using the \u003cstrong\u003eGlossary\u003c/strong\u003e drop-down, providing subglossaries focused on specific areas like clustering.\u003c/p\u003e\n"],["\u003cp\u003eThe glossary includes "Fundamentals" terms for newcomers, as well as advanced terms for experienced machine learning professionals.\u003c/p\u003e\n"]]],[],null,["# Frequently Asked Questions About Google's Machine Learning Glossary\n\nThis document asks and answers a few leading questions about\nGoogle's Machine Learning Glossary.\n\nHow do I propose a new term?\n----------------------------\n\nClick the **Send Feedback** button at the top or bottom of the Machine Learning\nGlossary. Then, tell us what term(s) are missing.\n\nCan I report a confusing definition?\n------------------------------------\n\nAbsolutely! Click the **Send Feedback** button and tell us.\n\nWill you email me a response to my feedback?\n--------------------------------------------\n\nUnfortunately not, but we really do review all feedback.\n\nWho writes the definitions?\n---------------------------\n\nA Google team of technical writers, researchers, and software engineers writes\nand reviews each definition.\n\nHow often do you add new definitions?\n-------------------------------------\n\nWe release batches of new terms three to four times per year. Additionally, we\nfrequently make minor changes to existing definitions.\n\nDo you provide subglossaries?\n-----------------------------\n\nYes, you can filter the glossary by choosing a topic from the **Glossary**\ndrop-down in the top navigation bar. For example, the **Clustering**\nsubglossary focuses on the terms relevant to, well, clustering.\n\nWho is the target audience?\n---------------------------\n\nWe aim the \"Fundamentals\" terms (those marked with a 🐣 icon) at\nmachine learning newcomers. At the other extreme, we aim certain advanced terms\nat experienced machine learning practitioners.\n\nWhy does my organization define terms differently than your glossary?\n---------------------------------------------------------------------\n\nThat's a pretty common problem in relatively new fields like machine learning.\nWe'll just offer our apologies and promise that machine learning terminology\nwill probably never be completely standardized.\n\nWhy do some definitions read like encyclopedia entries?\n-------------------------------------------------------\n\nA single sentence definition suffices for some terms, but other terms require\nextensive explanations, images, comparisons, examples, math formulas, and so on."]]