مسرد مصطلحات التعلم الآلي: الذكاء الاصطناعي التوليدي

تحتوي هذه الصفحة على مصطلحات مسرد الذكاء الاصطناعي التوليدي. للاطّلاع على جميع مصطلحات المسرد، انقر على هذا الرابط.

A

التقييم التلقائي

#language
#generativeAI

استخدام البرامج لتقييم جودة نتائج النموذج

عندما تكون نتائج النموذج واضحة نسبيًا، يمكن لنص برمجي أو برنامج مقارنة نتائج النموذج باستجابة مثالية. يُطلَق على هذا النوع من التقييم التلقائي أحيانًا اسم التقييم الآلي. غالبًا ما تكون المقاييس، مثل ROUGE أو BLEU، مفيدة للتقييم الآلي.

عندما تكون نتيجة النموذج معقّدة أو لا تتضمّن إجابة صحيحة واحدة، يُجري برنامج تعلُّم آلي منفصل يُعرف باسم المقيّم التلقائي أحيانًا التقييم التلقائي.

يختلف ذلك عن التقييم البشري.

تقييم التقييم التلقائي

#language
#generativeAI
آلية مختلطة لتقييم جودة ناتج نموذج الذكاء الاصطناعي التوليدي، والتي تجمع بين التقييم البشري والتقييم الآلي أداة التقييم الآلي هي نموذج تعلُّم آلة تم تدريبه على بيانات تم إنشاؤها من خلال التقييم البشري. من الناحية المثالية، يتعلم كاتب المحتوى الآلي محاكاة أسلوب المقيّم البشري.

تتوفّر أدوات كتابة محتوى آلية مُعدّة مسبقًا، ولكن يتم تعديل أفضل أدوات الكتابة الآلية خصيصًا للمهمة التي تقيّمها.

النموذج التدرّجي التلقائي

#language
#image
#generativeAI

نموذج يستنتج توقّعًا استنادًا إلى توقّعاته السابقة على سبيل المثال، تتوقّع نماذج اللغة التسلسلية التلقائية العنصر التالي استنادًا إلى العناصر التي تم توقّعها سابقًا. جميع النماذج اللغوية الكبيرة المستندة إلى نموذج Transformer هي نماذج ذاتية الرجوع.

في المقابل، لا تكون نماذج الصور المستندة إلى GAN عادةً متراجِعة تلقائيًا، لأنّها تُنشئ صورة في خطوة واحدة للأمام وليس بشكلٍ متكرّر في الخطوات. ومع ذلك، تكون بعض نماذج إنشاء الصور متراجِعة تلقائيًا لأنّها تُنشئ صورة على مراحل.

C

توجيه سلسلة الأفكار

#language
#generativeAI

تقنية هندسة الطلبات التي تشجع النموذج اللغوي الكبير (LLM) على شرح الاستدلال الذي يستند إليه، خطوة بخطوة على سبيل المثال، فكِّر في الطلب التالي، مع التركيز بشكل خاص على الجملة الثانية:

كم عدد قوى g التي سيواجهها السائق في سيارة تنطلق من 0 إلى 60 ميل في الساعة في 7 ثوانٍ؟ في الإجابة، يجب عرض جميع العمليات الحسابية ذات الصلة.

من المرجّح أن يتضمّن ردّ النموذج اللغوي الكبير ما يلي:

  • أظهِر تسلسلاً من صِيَغ الفيزياء، مع إدخال القيم 0 و60 و7 في الأماكن المناسبة.
  • اشرح سبب اختيار هذه الصِيَغ وما تعنيه المتغيّرات المختلفة.

تجبر طلبات سلسلة التفكير نموذج اللغة المحوسبة الكبير على إجراء جميع العمليات الحسابية، ما قد يؤدي إلى تقديم إجابة أكثر صحة. بالإضافة إلى ذلك، تتيح طلبات تسلسل التفكير للمستخدم فحص خطوات نموذج اللغة الضخمة لتحديد ما إذا كانت الإجابة منطقية أم لا.

محادثة

#language
#generativeAI

محتوى حوار متبادل مع نظام تعلُّم الآلة، عادةً نموذج لغوي كبير يصبح التفاعل السابق في محادثة (ما كتبته وطريقة استجابة النموذج اللغوي الكبير) هو السياق للأجزاء اللاحقة من المحادثة.

روبوت الدردشة هو تطبيق لنموذج لغوي كبير.

تضمين اللغة في سياقها

#language
#generativeAI

إدراج يقترب من "فهم" الكلمات والعبارات بطرق يمكن للأشخاص الناطقين بطلاقة استخدامها يمكن أن تفهم نماذج "إدراج اللغة" المبنية على السياق البنية النحوية والدلالية والسياق المعقد.

على سبيل المثال، نأخذ في الاعتبار إدراجات الكلمة الإنجليزية cow. يمكن أن تمثّل عمليات التضمين القديمة مثل word2vec الكلمات الإنجليزية بحيث تكون المسافة في مساحة التضمين من بقرة إلى ثور مشابهة للمسافة من نعجة (أنثى الأغنام) إلى كبش (ذكر الأغنام) أو من أنثى إلى ذكر. يمكن أن تأخذ عمليات تضمين اللغة في السياق خطوة إضافية من خلال التعرّف على أنّ المتحدثين باللغة الإنجليزية يستخدمون أحيانًا كلمة cow بشكل عفوي للإشارة إلى البقرة أو الثور.

قدرة الاستيعاب

#language
#generativeAI

عدد الرموز التي يمكن للنموذج معالجتها في طلب معيّن وكلما زادت قدرة الاستيعاب، زادت المعلومات التي يمكن للنموذج استخدامها لتقديم ردود متسقة ومترابطة على الطلب.

D

طلب مباشر

#language
#generativeAI

مرادف لـ الطلب بلا مثال.

التقطير

#generativeAI

عملية تقليل حجم نموذج واحد (المعروف باسم المعلّم) إلى نموذج أصغر (المعروف باسم الطالب) يحاكي توقّعات النموذج الأصلي بأكبر قدر ممكن من الدقة إنّ التكثيف مفيد لأنّ النموذج الأصغر حجمًا يقدّم ميزتَين رئيسيتين مقارنةً بالنموذج الأكبر حجمًا (المعلّم):

  • وقت استنتاج أسرع
  • خفض استهلاك الذاكرة والطاقة

ومع ذلك، لا تكون توقّعات الطلاب عادةً جيدة بقدر توقّعات المعلّم.

يُدرِّب التقطير نموذج الطالب لتقليل دالة الخسارة استنادًا إلى الفرق بين المخرجات التي تقدّمها توقّعات نماذج الطالب والمعلّم.

قارِن بين التقطير والمصطلحات التالية:

اطّلِع على النماذج اللغوية الكبيرة: التحسين والتركيز وهندسة الطلبات في الدورة التدريبية المكثّفة عن تعلُّم الآلة للحصول على مزيد من المعلومات.

E

evals

#language
#generativeAI
#Metric

يُستخدَم بشكل أساسي كاختصار لتقييمات نموذج اللغة الضخمة. وعلى نطاق أوسع، التقييمات هي اختصار لأي شكل من أشكال التقييم.

التقييم

#language
#generativeAI
#Metric

يشير ذلك المصطلح إلى عملية قياس جودة نموذج أو مقارنة نماذج مختلفة مع بعضها.

لتقييم نموذج تعلُّم آلي مُوجَّه ، يتم عادةً تقييمه مقارنةً بمجموعة التحقّق ومجموعة الاختبار. تقييم نموذج تعلم الآلة يتضمن عادةً تقييمات أوسع نطاقًا للجودة والسلامة.

F

الواقعية

#generativeAI

في مجال تعلُّم الآلة، سمة تصف نموذجًا يستند ناتجه إلى الواقع إنّ دقة المعلومات هي مفهوم وليس مقياسًا. على سبيل المثال، لنفترض أنّك أرسلت الطلب التالي إلى نموذج لغوي كبير:

ما هي الصيغة الكيميائية لملح الطعام؟

سيجيب نموذج يُحسِّن من دقة المعلومات على النحو التالي:

NaCl

من المغري الافتراض أنّ جميع النماذج يجب أن تستند إلى الحقائق. ومع ذلك، من المفترض أن تؤدي بعض الطلبات، مثل الطلب التالي، إلى تحسين الجانب الإبداعي في نموذج الذكاء الاصطناعي التوليدي بدلاً من الجانب الواقعي.

أريد سماع قصيدة قصيرة عن رائد فضاء ودودة.

من غير المرجّح أن يستند الراب الناتج إلى الواقع.

يُرجى التمييز بين الثبات.

الطلب بأمثلة قليلة

#language
#generativeAI

طلب يحتوي على أكثر من مثال واحد (أي "بضعة" أمثلة) يوضّح كيفية الردّ من خلال نموذج اللغة الكبير على سبيل المثال، يحتوي الطلب الطويل التالي على مثالين يوضّحان لنموذج لغوي كبير كيفية الإجابة عن طلب بحث.

أجزاء طلب واحد ملاحظات
ما هي العملة الرسمية للبلد المحدّد؟ السؤال الذي تريد أن يجيب عنه "نموذج اللغة المحوسبة"
فرنسا: يورو مثال واحد
المملكة المتحدة: الجنيه الإسترليني مثال آخر
الهند: طلب البحث الفعلي

يحقّق الطلب بأمثلة قليلة نتائج مرغوب فيها بشكل عام أكثر من الطلب بلا مثال و الطلب بمثال واحد. ومع ذلك، يتطلّب الطلب بأمثلة قليلة طلبًا أطول.

الطلب بأمثلة قليلة هو شكل من أشكال التعلّم ببضع فُرَص المطبَّق على التعلّم المستنِد إلى طلبات.

اطّلِع على هندسة الطلبات في الدورة المكثّفة عن تعلُّم الآلة للحصول على مزيد من المعلومات.

التحسين

#language
#image
#generativeAI

جولة تدريب ثانية خاصة بالمهمة يتم إجراؤها على نموذج تم تدريبه مسبقًا لتحسين مَعلماته في حالة استخدام معيّنة. على سبيل المثال، تتمثل تسلسل التدريب الكامل لبعض النماذج اللغوية الكبيرة على النحو التالي:

  1. التدريب المُسبَق: يتم تدريب نموذج لغوي كبير على مجموعة بيانات عامة واسعة النطاق، مثل جميع صفحات Wikipedia باللغة الإنجليزية.
  2. التحسين: يمكنك تدريب النموذج المدَّرب مسبقًا لتنفيذ مهمة معيّنة، مثل الردّ على طلبات البحث الطبية. تشمل عملية التحسين عادةً مئات أو آلاف الأمثلة التي تركّز على مهمة معيّنة.

في ما يلي مثال آخر على تسلسل التدريب الكامل لنموذج صور كبير:

  1. التدريب المُسبَق: يمكنك تدريب نموذج صور كبير على مجموعة بيانات عامة واسعة، مثل جميع الصور في Wikimedia commons.
  2. التحسين الدقيق: يمكنك تدريب النموذج المدّرب مسبقًا لتنفيذ مهمة معيّنة، مثل إنشاء صور لحيوانات الأوركا.

يمكن أن يتضمّن التحسين الدقيق أيّ مجموعة من الاستراتيجيات التالية:

  • تعديل جميع مَعلمات النموذج المدَّرب مسبقًا يُعرف ذلك أحيانًا باسم التحسين الكامل.
  • تعديل بعض المَعلمات الحالية للنموذج المدّرب مسبقًا فقط (عادةً الطبقات الأقرب إلى طبقة الإخراج)، مع إبقاء المَعلمات الحالية الأخرى بدون تغيير (عادةً الطبقات الأقرب إلى طبقة الإدخال) راجِع مقالة الضبط الفعال للمَعلمات.
  • إضافة المزيد من الطبقات، عادةً فوق الطبقات الحالية الأقرب إلى طبقة الإخراج

التحسين الدقيق هو شكل من أشكال التعلُّم بالاستناد إلى نماذج سابقة. وبناءً على ذلك، قد تستخدِم عملية التحسين الدقيق دالة خسارة مختلفة أو نوعًا مختلفًا من النماذج مقارنةً بتلك المستخدَمة لتدريب النموذج المدّرب مسبقًا. على سبيل المثال، يمكنك تحسين نموذج صور كبير مدرَّب مسبقًا لإنشاء نموذج انحدار يُظهر عدد الطيور في صورة الإدخال.

قارِن بين التحسين الدقيق والمصطلحات التالية:

يمكنك الاطّلاع على التحسين في دورة التعلّم المكثّفة عن تعلُّم الآلة للحصول على مزيد من المعلومات.

نسبة النجاحات

#generativeAI
#Metric

مقياس لتقييم النص الذي ينشئه نموذج الذكاء الاصطناعي إنّ نسبة النجاح هي عدد العبارة الناتجة "الناجحة" مقسومًا على إجمالي عدد العبارات النصية الناتجة. على سبيل المثال، إذا أنشأ نموذج لغوي كبير 10 مجموعات من الرموز البرمجية، نجحت خمس منها، سيكون نسبة النجاح %50.

على الرغم من أنّ نسبة النجاح مفيدة بشكل عام في جميع الإحصاءات، فإنّ هذا المقياس مفيد في المقام الأول لقياس المهام التي يمكن التحقّق منها، مثل إنشاء الرموز البرمجية أو حلّ المشاكل الحسابية.

G

Gemini

#language
#image
#generativeAI

منظومة متكاملة تتضمّن تكنولوجيات الذكاء الاصطناعي الأكثر تقدّمًا من Google تشمل عناصر هذا النظام البيئي ما يلي:

  • نماذج Gemini المختلفة
  • واجهة المحادثة التفاعلية لنموذج Gemini يكتب المستخدمون طلبات ويردّ Gemini عليها.
  • واجهات برمجة تطبيقات Gemini المختلفة
  • منتجات مختلفة للأنشطة التجارية تستند إلى نماذج Gemini، مثل Gemini في Google Cloud

طُرز Gemini

#language
#image
#generativeAI

أحدث نماذج متعددة الوسائط المستندة إلى تكنولوجيا تحويل البيانات من Google تم تحديد نماذج Gemini خصيصًا للدمج مع موظّفي الدعم.

يمكن للمستخدمين التفاعل مع نماذج Gemini بطرق متنوعة، بما في ذلك من خلال واجهة حوار تفاعلية ومن خلال حِزم تطوير البرامج (SDK).

النص الذي تم إنشاؤه

#language
#generativeAI

بشكل عام، النص الذي يُخرجه نموذج الذكاء الاصطناعي عند تقييم نماذج لغوية كبيرة، تقارن بعض المقاييس النص الذي تم إنشاؤه مقارنةً بأحد النصوص المرجعية. على سبيل المثال، لنفترض أنّك تحاول معرفة مدى فعالية نموذج تعلُّم الآلة في الترجمة من الفرنسية إلى الهولندية. في هذه الحالة:

  • النص الذي تم إنشاؤه هو الترجمة الهولندية التي يعرضها نموذج الذكاء الاصطناعي.
  • النص المرجعي هو الترجمة الهولندية التي ينشئها مترجم بشري (أو برنامج).

يُرجى العِلم أنّ بعض استراتيجيات التقييم لا تتضمّن نصًا مرجعيًا.

الذكاء الاصطناعي التوليدي

#language
#image
#generativeAI

مجال تحويلي ناشئ بدون تعريف رسمي ومع ذلك، يتفق معظم الخبراء على أنّ نماذج الذكاء الاصطناعي التوليدي يمكنها إنشاء ("توليد") محتوى يتضمن كل ما يلي:

  • معقّد
  • متّسقة
  • الصورة الأصلية

على سبيل المثال، يمكن أن ينشئ نموذج الذكاء الاصطناعي التوليدي مقالات أو صورًا معقدة.

يمكن لبعض التقنيات السابقة، بما في ذلك النماذج اللغوية طويلة المدى (LSTM) والنماذج العصبية التسلسلية (RNN)، أيضًا إنشاء محتوى أصلي ومتسق. يرى بعض الخبراء أنّ هذه التقنيات السابقة هي نوع من الذكاء الاصطناعي التوليدي، بينما يرى آخرون أنّ الذكاء الاصطناعي التوليدي الحقيقي يتطلّب مخرجات أكثر تعقيدًا من تلك التي يمكن أن تنتجها هذه التقنيات السابقة.

يختلف ذلك عن تعلُّم الآلة التوقّعي.

ردّ جيد

#language
#generativeAI

إجابة معروفة بأنّها جيدة على سبيل المثال، في ما يتعلّق بالملف الشخصي التالي :

2 + 2

نأمل أن يكون الردّ على النحو التالي:

4

H

التقييم البشري

#language
#generativeAI

عملية يحكم فيها الأشخاص على جودة ناتج نموذج تعلُّم الآلة، على سبيل المثال، الاستعانة بأشخاص ثنائيي اللغة لتقييم جودة ناتج نموذج ترجمة تعلُّم الآلة يكون التقييم البشري مفيدًا بشكل خاص لتقييم النماذج التي تتضمن إجابات صحيحة متعددة.

يختلف هذا التقييم عن التقييم التلقائي وتقييم المراجع الآلي.

دور الإنسان (HITL)

#generativeAI

عبارة اصطلاحية غير محدّدة بدقة يمكن أن تعني أيًا مما يلي:

  • سياسة تقييم ناتج الذكاء الاصطناعي التوليدي بشكل نقدي أو تشكّكي على سبيل المثال، يندهش الفريق الذي يكتب مسرد تعلُّم الآلة من ما يمكن أن تُنجزه النماذج اللغوية الكبيرة، ولكنه يأخذ في الاعتبار الأخطاء التي ترتكبها هذه النماذج.
  • استراتيجية أو نظام لضمان مساعدة المستخدمين في تشكيل سلوك النموذج وتقييمه وتحسينه من خلال إشراك أحد الأشخاص في عملية المراجعة، يمكن للذكاء الاصطناعي الاستفادة من كل من الذكاء الآلي والذكاء البشري. على سبيل المثال، إنّ النظام الذي ينشئ فيه الذكاء الاصطناعي رمزًا يراجعه مهندسو البرمجيات بعد ذلك هو نظام يعتمد على مشاركة الإنسان.

I

التعلّم في السياق

#language
#generativeAI

مرادف لـ الطلب بأمثلة قليلة.

ضبط التعليمات

#generativeAI

هو شكل من أشكال التحسين الدقيق الذي يُحسِّن قدرة نموذج الذكاء الاصطناعي التوليدي على اتّباع تعليماته. يتضمن ضبط التعليمات تدريب نموذج على سلسلة من طلبات التعليمات التي تغطي عادةً مجموعة كبيرة من المهام. وبعد ذلك، يميل النموذج الذي تم ضبطه وفقًا للتعليمات إلى توليد ردود مفيدة على الطلبات بلا مثال في مجموعة متنوعة من المهام.

تحديد أوجه الاختلاف والتشابه مع:

L

LLM

#language
#generativeAI

اختصار النموذج اللغوي الكبير.

تقييمات النماذج اللغوية الكبيرة (evals)

#language
#generativeAI
#Metric

مجموعة من المقاييس والمقاييس المعيارية لتقييم أداء النماذج اللغوية الكبيرة بشكل عام، تؤدي تقييمات LLM إلى ما يلي:

  • مساعدة الباحثين في تحديد الجوانب التي تحتاج إلى تحسين في النماذج اللغوية الكبيرة
  • مفيدة في مقارنة نماذج اللغة الكبيرة المختلفة وتحديد أفضل نموذج لغة كبيرة مهمة معيّنة
  • المساعدة في ضمان أمان النماذج اللغوية الكبيرة واستخدامها بطريقة أخلاقية

اطّلِع على النماذج اللغوية الكبيرة (LLM) في دورة التعلّم الآلي المكثّفة للحصول على مزيد من المعلومات.

LoRA

#language
#generativeAI

اختصار Low-Rank Adaptability.

Low-Rank Adaptability (LoRA)

#language
#generativeAI

تقنية فعّالة من حيث المَعلمات للتحسين الدقيق التي "تجميد" مَعلمات النموذج المدربة مسبقًا (كي لا يمكن تعديلها بعد ذلك) ثم تُدخِل مجموعة صغيرة من المَعلمات القابلة للتدريب في النموذج. هذه المجموعة من الأوزان القابلة للتدريب (المعروفة أيضًا باسم "مصفوفات التعديل") أصغر بكثير من النموذج الأساسي، وبالتالي يتم تدريبها بشكلٍ أسرع بكثير.

توفّر شبكة LoRA المزايا التالية:

  • تحسين جودة توقّعات النموذج للنطاق الذي يتم فيه تطبيق التحسين الدقيق
  • تحسين الأداء بشكل أسرع من الأساليب التي تتطلّب تحسين جميع ملفّات برمجية النموذج
  • تقليل التكلفة الحسابية لعملية الاستنتاج من خلال تفعيل عرض نماذج متعددة ومتخصّصة بشكل متزامن تشترك في النموذج الأساسي نفسه

M

الترجمة الآلية

#generativeAI

استخدام برامج (عادةً ما تكون نموذج تعلُّم آلة) لتحويل نص من لغة بشرية إلى لغة بشرية أخرى، على سبيل المثال، من الإنجليزية إلى اليابانية

متوسّط متوسط الدقّة عند k (mAP@k)

#language
#generativeAI
#Metric

المتوسط الإحصائي لجميع نتائج متوسّط الدقة عند k على مستوى مجموعة بيانات التحقّق. من بين استخدامات متوسّط متوسط الدقة عند k هو تقييم جودة الاقتراحات التي ينشئها نظام التوصية.

على الرغم من أنّ عبارة "متوسط المتوسط" تبدو زائدة، إلا أنّ اسم المقياس مناسب. بعد كل شيء، يجد هذا المقياس متوسّط قيم متوسط الدقة عند k المتعددة.

مزيج من الخبراء

#language
#generativeAI

مخطّط لزيادة كفاءة الشبكة العصبية من خلال استخدام مجموعة فرعية فقط من مَعلماتها (المعروفة باسم الخبير) لمعالجة رمز إدخال معيّن أو مثال تُوجّه شبكة التوجيه كل رمز مميّز أو مثال إدخال إلى الخبراء المناسبين.

لمعرفة التفاصيل، يُرجى الاطّلاع على أيّ من المقالتَين التاليتَين:

MMIT

#language
#image
#generativeAI

اختصار لعبارة مُعدّة للتعليمات المتعدّدة الوسائط.

تسلسل النماذج

#generativeAI

نظام يختار النموذج المثالي لطلب اتّباع استنتاج معيّن

تخيل مجموعة من النماذج، تتراوح بين النماذج الكبيرة جدًا (التي تتضمّن الكثير من المَعلمات) والنماذج الأصغر حجمًا (التي تتضمّن عددًا أقل بكثير من المَعلمات). تستهلك النماذج الكبيرة جدًا موارد حسابية أكثر في وقت النمذجة مقارنةً بالنماذج الأصغر حجمًا. ومع ذلك، يمكن أن تستنتج نماذج الكبيرة جدًا عادةً طلبات أكثر تعقيدًا من النماذج الأصغر حجمًا. يحدِّد التسلسل الهرمي للنماذج تعقيد طلب الاستنتاج، ثم يختار النموذج المناسب لإجراء الاستنتاج. إنّ الدافع الرئيسي لاستخدام نموذج التسلسل هو تقليل تكاليف الاستنتاج من خلال اختيار نماذج أصغر بشكل عام، واختيار نموذج أكبر فقط للاستعلامات الأكثر تعقيدًا.

لنفترض أنّ نموذجًا صغيرًا يعمل على هاتف ويعمل إصدار أكبر من ذلك النموذج على خادم بعيد. إنّ التسلسل الجيد للنموذج يقلل من التكلفة ووقت الاستجابة من خلال السماح للنموذج الأصغر حجمًا بمعالجة الطلبات البسيطة وعدم استدعاء سوى النموذج البعيد لمعالجة الطلبات المعقدة.

يمكنك أيضًا الاطّلاع على جهاز توجيه النماذج.

جهاز توجيه نموذجي

#generativeAI

الخوارزمية التي تحدّد النموذج المثالي للقيام بعملية الاستنتاج في التسلسل الهرمي للنموذج عادةً ما يكون جهاز التوجيه النموذجي هو نموذج تعلُّم آلة يتعرّف تدريجيًا على كيفية اختيار أفضل نموذج لمدخل معيّن. ومع ذلك، يمكن أن يكون جهاز التوجيه النموذجي أحيانًا خوارزمية أبسط غير مستندة إلى التعلم الآلي.

MOE

#language
#image
#generativeAI

اختصار مجموعة من الخبراء.

MT

#generativeAI

اختصار الترجمة الآلية.

لا

لا إجابة صحيحة واحدة (NORA)

#language
#generativeAI

طلب يتضمّن عدة ردود مناسبة على سبيل المثال، لا تتضمّن الرسالة التالية إجابة صحيحة واحدة:

أريد سماع نكتة عن الفيلة.

قد يكون من الصعب تقييم طلبات لا تتضمّن إجابة صحيحة واحدة.

NORA

#language
#generativeAI

اختصار لا توجد إجابة صحيحة واحدة.

O

الطلب بمثال واحد

#language
#generativeAI

طلب يتضمّن مثالاً واحدًا يوضّح كيفية ردّ النموذج اللغوي الكبير على سبيل المثال، يحتوي الطلب التالي على مثال واحد يوضّح للنموذج اللغوي الكبير كيفية الردّ على طلب بحث.

أجزاء طلب واحد ملاحظات
ما هي العملة الرسمية للبلد المحدّد؟ السؤال الذي تريد أن يجيب عنه "نموذج اللغة المحوسبة"
فرنسا: يورو مثال واحد
الهند: طلب البحث الفعلي

قارِن بين طلبات الإجراء الواحد والمصطلحات التالية:

P

ضبط فعّال للمَعلمات

#language
#generativeAI

مجموعة من الأساليب لتحسين نموذج لغوي تمّ تدريبه مسبقًا (PLM) بفعالية أكبر من التحسين الكامل عادةً ما تُجري عملية التحسين المُفعّلة للمَعلمات تعديلات على عدد أقل بكثير من المَعلمات مقارنةً بعملية التحسين التام، إلا أنّها تُنتج بشكل عام نموذجًا لغويًا كبيرًا يحقّق أداءً مماثلاً (أو شبه مماثل) لأداء نموذج لغوي كبير تم إنشاؤه من خلال عملية التحسين التام.

قارِن بين الضبط الفعال للمَعلمات وبين:

يُعرف الضبط الفعال للمَعلمات أيضًا باسم التحسين الفعال للمَعلمات.

PLM

#language
#generativeAI

اختصار نموذج لغوي مدرَّب مسبقًا.

نموذج مدرَّب بعد ذلك

#language
#image
#generativeAI

مصطلح غير محدّد بدقة يشير عادةً إلى نموذج تم تدريبه مسبقًا وخضع لبعض المعالجة اللاحقة، مثل إجراء واحد أو أكثر مما يلي:

نموذج مدرَّب مسبقًا

#language
#image
#generativeAI

عادةً ما يكون نموذجًا سبق تدريبه. يمكن أن يشير المصطلح أيضًا إلى متجه التضمين الذي تم تدريبه سابقًا.

يشير مصطلح النموذج اللغوي المُدرَّب مسبقًا عادةً إلى نموذج لغوي كبير سبق أن تم تدريبه.

التدريب المُسبَق

#language
#image
#generativeAI

التدريب الأولي لنموذج على مجموعة بيانات كبيرة إنّ بعض النماذج المدربة مسبقًا هي نماذج عملاقة وبطيئة، ويجب عادةً تحسينها من خلال تدريب إضافي. على سبيل المثال، قد يُجري خبراء تعلُّم الآلة تدريبًا مسبقًا على نموذج لغة كبير باستخدام مجموعة بيانات نصية ضخمة، مثل جميع الصفحات باللغة الإنجليزية في "ويكيبيديا". بعد التدريب المُسبَق، يمكن تحسين النموذج الناتج بشكلٍ أكبر باستخدام أيّ من التقنيات التالية:

طلب

#language
#generativeAI

أي نص يتم إدخاله كإدخال إلى نموذج لغوي كبير لإعداد النموذج للعمل بطريقة معيّنة. يمكن أن تكون الطلبات قصيرة مثل عبارة أو طويلة بشكل عشوائي (على سبيل المثال، نص رواية كامل). تندرج الطلبات ضمن فئات متعدّدة، بما في ذلك تلك الواردة في الجدول التالي:

فئة الطلب مثال ملاحظات
السؤال ما هي سرعة طيران الحمام؟
مدرسة تعليم كتابة قصيدة مضحكة عن المراجحة طلب يطلب من النموذج اللغوي الكبير تنفيذ إجراء معيّن
مثال ترجمة رمز Markdown إلى HTML على سبيل المثال:
Markdown: * عنصر قائمة
HTML: <ul> <li>عنصر قائمة</li> </ul>
الجملة الأولى في هذا المثال هي عبارة عن إرشاد. الباقي من الطلب هو المثال.
الدور شرح سبب استخدام خوارزمية انحدار التدرج في تدريب تعلُّم الآلة للحصول على درجة الدكتوراه في الفيزياء الجزء الأول من الجملة هو عبارة عن توجيه، وتشكل العبارة "إلى درجة الدكتوراه في الفيزياء" جزء الوظيفة.
إدخال جزئي لإكمال النموذج يقيم رئيس وزراء المملكة المتحدة في يمكن أن ينتهي طلب الإدخال الجزئي بشكل مفاجئ (كما هو الحال في هذا المثال) أو ينتهي بشرطة سفلية.

يمكن لنموذج الذكاء الاصطناعي التوليدي الاستجابة لطلب باستخدام نص أو رمز برمجي أو صور أو إدراج أو فيديوهات أو أي شيء آخر تقريبًا.

التعلّم المستنِد إلى الطلبات

#language
#generativeAI

ميزة تتوفّر في بعض النماذج تتيح لها تعديل سلوكها استجابةً لإدخال نص عشوائي (الطلبات). في النموذج النموذجي للتعلم المستنِد إلى طلب، يردّ النموذج اللغوي الكبير على طلب من خلال إنشاء نص. على سبيل المثال، لنفترض أنّ أحد المستخدمين يُدخل الطلب التالي:

تلخيص قانون نيوتن الثالث للحركة

لا يتم تدريب النموذج القادر على التعلّم المستنِد إلى الطلبات على الإجابة عن الطلب السابق على وجه التحديد. بدلاً من ذلك، "يعرف" النموذج الكثير من الحقائق حول الفيزياء، والكثير عن قواعد اللغة العامة، والكثير عن ما يشكّل بشكل عام إجابات مفيدة. هذه المعرفة كافية لتقديم إجابة مفيدة (على أمل ذلك). من خلال الملاحظات الإضافية التي يقدّمها المستخدمون ("كانت هذه الإجابة معقّدة جدًا" أو "ما هو ردّ الفعل؟")، يمكن لبعض أنظمة التعلّم المستندة إلى طلبات البحث تحسين فائدة إجاباتها تدريجيًا.

تصميم الطلب

#language
#generativeAI

مرادف لـ هندسة الطلبات.

هندسة الطلبات

#language
#generativeAI

فن إنشاء طلبات تؤدي إلى الحصول على الردود المطلوبة من نموذج لغوي كبير يُجري الأشخاص هندسة الطلبات. إنّ كتابة طلبات مساعدة منظَّمة جيدًا هو جزء أساسي من ضمانتلقّي ردود مفيدة من نموذج لغوي كبير. تعتمد هندسة الطلبات على عوامل متعدّدة، منها:

  • مجموعة البيانات المستخدَمة للتدريب المُسبَق والتحسين المحتمل للنموذج اللغوي الكبير
  • temperature ومَعلمات فك التشفير الأخرى التي يستخدمها النموذج لإنشاء الردود

تصميم الطلبات هو مصطلح مرادف لهندسة الطلبات.

يمكنك الاطّلاع على مقدّمة عن تصميم الطلبات لمزيد من التفاصيل حول كتابة طلبات مفيدة.

ضبط الطلبات

#language
#generativeAI

آلية ضبط فعّال للمَعلمات تتعرّف على "بادئة" يضيفها النظام إلى الطلب الفعلي.

أحد أشكال ضبط الطلبات، والذي يُسمى أحيانًا ضبط البادئة، هو إضافتها في كل طبقة. في المقابل، لا يؤدي معظم عمليات ضبط الطلبات إلا إلى إضافة بادئة إلى طبقة الإدخال.

R

نص مرجعي

#language
#generativeAI

ردّ الخبير على طلب على سبيل المثال، في ما يلي الطلب التالي:

ترجمة السؤال "ما اسمك؟" من الإنجليزية إلى الفرنسية

قد يكون ردّ الخبير على النحو التالي:

Comment vous appelez-vous?

تقيس مقاييس مختلفة (مثل ROUGE) درجة تطابق النص المرجعي مع النص الذي أنشأه نموذج تعلُّم الآلة.

التعلّم المعزّز من الردود البشرية (RLHF)

#generativeAI
#rl

استخدام ملاحظات من المقيّمين لتحسين جودة ردود النموذج على سبيل المثال، يمكن أن تطلب آلية RLHF من المستخدمين تقييم جودة استجابة النموذج باستخدام رمز إيموجي 👍 أو 👎. ويمكن للنظام بعد ذلك تعديل ردوده المستقبلية استنادًا إلى هذه الملاحظات.

طلب الدور

#language
#generativeAI

جزء اختياري من الطلب الذي يحدّد شريحة جمهور مستهدَفة لاستجابة نموذج الذكاء الاصطناعي التوليدي. بدون طلب تحديد الدور، يقدّم نموذج لغوي كبير إجابة قد تكون مفيدة أو غير مفيدة للشخص الذي يطرح الأسئلة. من خلال طلب دور، يمكن أن يجيب ملف شخصي لغوي كبير بطريقة أكثر ملاءمةً وفائدةً لجمهور مستهدف معيّن. على سبيل المثال، يظهر جزء طلب الدور من الطلبات التالية بخط عريض:

  • تلخيص هذا المستند لرسالة دكتوراه في الاقتصاد
  • وصف آلية عمل المد والجزر لطفل في العاشرة من عمره
  • شرح الأزمة المالية لعام 2008 تحدّث كما تتحدّث مع طفل صغير، أو كلب من سلالة لابرادور.

S

ضبط الطلبات اللطيفة

#language
#generativeAI

أسلوب لضبط نموذج لغوي كبير لمهمة معيّنة، بدون استخدام موارد مكثفة في عملية التحسين الدقيق بدلاً من إعادة تدريب كل المَعلمات في النموذج، تعمل ميزة "ضبط الطلبات اللطيفة" على تعديل الطلب تلقائيًا لتحقيق الهدف نفسه.

استنادًا إلى طلب نصي، يؤدي تعديل الطلبات الناعمة عادةً إلى إلحاق عمليات إدراج رموز إضافية بالطلب واستخدام الانتشار العكسي لتحسين الإدخال.

يحتوي الطلب "الصعِب" على رموز مميّزة فعلية بدلاً من عمليات إدراج الرموز المميّزة.

T

درجة الحرارة

#language
#image
#generativeAI

مَعلمة فائقة تتحكّم في درجة العشوائية لمخرجات النموذج تؤدي درجات الحرارة المرتفعة إلى زيادة العشوائية في النتائج، بينما تؤدي درجات الحرارة المنخفضة إلى تقليل العشوائية في النتائج.

يعتمد اختيار أفضل درجة حرارة على التطبيق المحدّد والخصائص المفضّلة لمخرجات النموذج. على سبيل المثال، قد تحتاج إلى رفع درجة الحرارة عند إنشاء تطبيق يُنشئ مواد إبداعية. في المقابل، من المحتمل أن تخفض درجة الحرارة عند إنشاء نموذج يصنف الصور أو النصوص لتحسين دقة النموذج واتساقه.

غالبًا ما يتم استخدام درجة الحرارة مع softmax.

Z

الطلب بلا مثال

#language
#generativeAI

طلب لا يقدّم مثالاً على الردّ الذي تريده من النموذج اللغوي الكبير على سبيل المثال:

أجزاء طلب واحد ملاحظات
ما هي العملة الرسمية للبلد المحدّد؟ السؤال الذي تريد أن يجيب عنه "نموذج اللغة المحوسبة"
الهند: طلب البحث الفعلي

قد يردّ النموذج اللغوي الكبير بأيّ مما يلي:

  • روبية
  • INR
  • ر.ه.‏
  • الروبية الهندية
  • الروبية
  • الروبية الهندية

جميع الإجابات صحيحة، ولكن قد تفضّل تنسيقًا معيّنًا.

قارِن بين طلبات البحث بدون أي معلومات سابقة والمصطلحات التالية: