इस पेज पर, जनरेटिव एआई की शब्दावली के बारे में जानकारी दी गई है. सभी शब्दावली के लिए, यहां क्लिक करें.
A
अडैप्टेशन
ट्यूनिंग या फ़ाइन-ट्यूनिंग के लिए इस्तेमाल किया जाने वाला दूसरा शब्द.
अपने-आप होने वाला आकलन
किसी मॉडल के आउटपुट की क्वालिटी का आकलन करने के लिए सॉफ़्टवेयर का इस्तेमाल करना.
जब मॉडल का आउटपुट काफ़ी आसान होता है, तो कोई स्क्रिप्ट या प्रोग्राम, मॉडल के आउटपुट की तुलना गोल्डन रिस्पॉन्स से कर सकता है. इस तरह के अपने-आप होने वाले आकलन को कभी-कभी प्रोग्रामैटिक आकलन कहा जाता है. प्रोग्राम के हिसाब से आकलन करने के लिए, ROUGE या BLEU जैसी मेट्रिक अक्सर काम की होती हैं.
जब मॉडल का आउटपुट मुश्किल होता है या कोई एक सही जवाब नहीं होता, तो कभी-कभी ऑटोरेटर नाम का एक अलग एमएल प्रोग्राम, अपने-आप आकलन करता है.
इसकी तुलना मानवीय आकलन से करें.
ऑटोरेटर की परफ़ॉर्मेंस का आकलन
यह जनरेटिव एआई मॉडल के आउटपुट की क्वालिटी का आकलन करने का एक हाइब्रिड तरीका है. इसमें मैन्युअल तरीके से आकलन और ऑटोमैटिक तरीके से आकलन, दोनों शामिल हैं. ऑटोरेटर, एक एमएल मॉडल है. इसे मैन्युअल तरीके से किए गए आकलन से बनाए गए डेटा पर ट्रेन किया जाता है. आदर्श रूप से, ऑटोमेटेड रेटिंग देने वाला सिस्टम, मैन्युअल तरीके से रेटिंग देने वाले व्यक्ति की तरह काम करता है.पहले से तैयार किए गए ऑटोरेटर उपलब्ध हैं. हालांकि, सबसे अच्छे ऑटोरेटर को खास तौर पर उस टास्क के लिए फ़ाइन-ट्यून किया जाता है जिसका आकलन किया जा रहा है.
ऑटो-रिग्रेसिव मॉडल
ऐसा मॉडल जो अपने पिछले अनुमानों के आधार पर अनुमान लगाता है. उदाहरण के लिए, ऑटो-रिग्रेसिव भाषा मॉडल, पहले से अनुमानित किए गए टोकन के आधार पर अगले टोकन का अनुमान लगाते हैं. ट्रांसफ़ॉर्मर पर आधारित सभी लार्ज लैंग्वेज मॉडल, ऑटो-रिग्रेसिव होते हैं.
इसके उलट, GAN पर आधारित इमेज मॉडल आम तौर पर ऑटो-रिग्रेसिव नहीं होते. ऐसा इसलिए, क्योंकि वे एक ही फ़ॉरवर्ड-पास में इमेज जनरेट करते हैं. वे चरणों में बार-बार इमेज जनरेट नहीं करते. हालांकि, इमेज जनरेट करने वाले कुछ मॉडल ऑटो-रिग्रेसिव होते हैं, क्योंकि वे इमेज को चरणों में जनरेट करते हैं.
B
बेस मॉडल
यह पहले से ट्रेन किया गया मॉडल है. इसका इस्तेमाल, फ़ाइन-ट्यूनिंग के लिए शुरुआती पॉइंट के तौर पर किया जा सकता है. इससे खास टास्क या ऐप्लिकेशन को पूरा किया जा सकता है.
प्री-ट्रेन मॉडल और फ़ाउंडेशन मॉडल के बारे में भी जानें.
C
चेन-ऑफ़-थॉट प्रॉम्प्ट
यह प्रॉम्प्ट इंजीनियरिंग की एक ऐसी तकनीक है जो लार्ज लैंग्वेज मॉडल (एलएलएम) को, जवाब देने के पीछे की वजह को चरण दर चरण बताने के लिए बढ़ावा देती है. उदाहरण के लिए, इस प्रॉम्प्ट को देखें. इसमें दूसरे वाक्य पर खास ध्यान दें:
अगर कोई कार 7 सेकंड में 0 से 60 मील प्रति घंटे की रफ़्तार पकड़ लेती है, तो ड्राइवर को कितने G फ़ोर्स का अनुभव होगा? जवाब में, सभी ज़रूरी कैलकुलेशन दिखाएं.
एलएलएम का जवाब ऐसा हो सकता है:
- फ़िज़िक्स के फ़ॉर्मूलों का क्रम दिखाओ. इसमें सही जगहों पर 0, 60, और 7 वैल्यू डालो.
- यह भी बताएं कि उन फ़ॉर्मूलों को क्यों चुना गया और अलग-अलग वैरिएबल का क्या मतलब है.
चेन-ऑफ़-थॉट प्रॉम्प्टिंग से, एलएलएम को सभी कैलकुलेशन करनी पड़ती हैं. इससे ज़्यादा सही जवाब मिल सकता है. इसके अलावा, चेन-ऑफ़-थॉट प्रॉम्प्टिंग की मदद से उपयोगकर्ता, एलएलएम के जवाब देने के तरीके की जांच कर सकता है. इससे यह पता चलता है कि जवाब सही है या नहीं.
चैट
किसी एमएल सिस्टम के साथ बातचीत का कॉन्टेंट. आम तौर पर, यह लार्ज लैंग्वेज मॉडल होता है. चैट में पिछली बातचीत (आपने क्या टाइप किया और लार्ज लैंग्वेज मॉडल ने कैसे जवाब दिया) को चैट के बाद के हिस्सों के लिए कॉन्टेक्स्ट माना जाता है.
चैटबॉट, लार्ज लैंग्वेज मॉडल का एक ऐप्लिकेशन है.
संदर्भ के हिसाब से भाषा को एंबेड करना
एम्बेडिंग, शब्दों और वाक्यांशों को "समझने" के करीब आती है. यह इंसानों की तरह ही भाषा को समझ सकती है. कॉन्टेक्स्ट के हिसाब से भाषा के एम्बेडिंग, मुश्किल सिंटैक्स, सिमैंटिक, और कॉन्टेक्स्ट को समझ सकते हैं.
उदाहरण के लिए, अंग्रेज़ी शब्द cow के एम्बेडिंग देखें. word2vec जैसे पुराने एम्बेडिंग, अंग्रेज़ी शब्दों को इस तरह से दिखा सकते हैं कि एम्बेडिंग स्पेस में गाय से बैल की दूरी, भेड़ी (मादा भेड़) से भेड़ा (नर भेड़) या महिला से पुरुष की दूरी के बराबर हो. संदर्भ के हिसाब से भाषा को एंबेड करने की प्रोसेस, एक कदम आगे बढ़कर यह पहचान सकती है कि अंग्रेज़ी बोलने वाले लोग कभी-कभी cow शब्द का इस्तेमाल, गाय या बैल के लिए करते हैं.
कॉन्टेक्स्ट विंडो
किसी मॉडल के लिए, प्रॉम्प्ट में टोकन की संख्या. कॉन्टेक्स्ट विंडो जितनी बड़ी होगी, मॉडल उतनी ही ज़्यादा जानकारी का इस्तेमाल करके, प्रॉम्प्ट के लिए सटीक और एक जैसे जवाब दे पाएगा.
D
सीधे तौर पर प्रॉम्प्ट करना
ज़ीरो-शॉट प्रॉम्प्ट के लिए समानार्थी शब्द.
डिस्टिलेशन
किसी मॉडल (जिसे टीचर कहा जाता है) के साइज़ को कम करके, एक छोटा मॉडल (जिसे छात्र कहा जाता है) बनाना. यह छोटा मॉडल, ओरिजनल मॉडल के अनुमानों को ज़्यादा से ज़्यादा सटीक तरीके से दोहराता है. डिस्टिलेशन का इस्तेमाल करना फ़ायदेमंद होता है, क्योंकि छोटे मॉडल के दो मुख्य फ़ायदे होते हैं. ये फ़ायदे, बड़े मॉडल (टीचर) के मुकाबले ज़्यादा होते हैं:
- जवाब देने में कम समय लगता है
- मेमोरी और बैटरी की खपत कम होती है
हालांकि, छात्र या छात्रा के अनुमान आम तौर पर शिक्षक के अनुमानों जितने सटीक नहीं होते.
डिस्टिलेशन, छात्र मॉडल को इस तरह से ट्रेन करता है कि वह लॉस फ़ंक्शन को कम कर सके. यह छात्र और शिक्षक मॉडल की अनुमानित वैल्यू के बीच के अंतर पर आधारित होता है.
आसवन की तुलना इन शब्दों से करें:
ज़्यादा जानकारी के लिए, मशीन लर्निंग क्रैश कोर्स में एलएलएम: फ़ाइन-ट्यूनिंग, डिस्टिलेशन, और प्रॉम्प्ट इंजीनियरिंग देखें.
E
आकलन
इसका इस्तेमाल मुख्य रूप से, एलएलएम के आकलन के लिए किया जाता है. मोटे तौर पर, इवैल, इवैल्यूएशन का संक्षिप्त रूप है.
आकलन
किसी मॉडल की क्वालिटी को मेज़र करने या अलग-अलग मॉडल की तुलना करने की प्रोसेस.
सुपरवाइज़्ड मशीन लर्निंग मॉडल का आकलन करने के लिए, आम तौर पर इसकी तुलना मान्य डेटा सेट और टेस्ट डेटा सेट से की जाती है. एलएलएम का आकलन करने में आम तौर पर, क्वालिटी और सुरक्षा से जुड़े बड़े पैमाने पर आकलन शामिल होते हैं.
F
तथ्यों का सही होना
मशीन लर्निंग की दुनिया में, यह एक ऐसी प्रॉपर्टी है जो किसी ऐसे मॉडल के बारे में बताती है जिसका आउटपुट, असलियत पर आधारित होता है. तथ्यों का सही होना, एक मेट्रिक के बजाय एक सिद्धांत है. उदाहरण के लिए, मान लें कि आपने लार्ज लैंग्वेज मॉडल को यह प्रॉम्प्ट भेजा है:
खाने के नमक का केमिकल फ़ॉर्मूला क्या है?
तथ्यों को सही रखने के लिए ऑप्टिमाइज़ किया गया मॉडल, इस तरह जवाब देगा:
NaCl
यह मान लेना आसान है कि सभी मॉडल तथ्यों पर आधारित होने चाहिए. हालांकि, कुछ प्रॉम्प्ट के लिए जनरेटिव एआई मॉडल को तथ्यों के बजाय क्रिएटिविटी को ऑप्टिमाइज़ करना चाहिए. जैसे, यहां दिए गए प्रॉम्प्ट.
मुझे एक अंतरिक्ष यात्री और एक कैटरपिलर के बारे में लिमरिक सुनाओ.
इस बात की संभावना कम है कि जवाब में मिली कविता, असल जानकारी पर आधारित हो.
भरोसेमंद स्रोतों से जानकारी लेने के सिद्धांत के साथ कंट्रास्ट.
तेज़ी से कम होना
एलएलएम की परफ़ॉर्मेंस को बेहतर बनाने के लिए, ट्रेनिंग की एक तकनीक. फ़ास्ट डिके में, ट्रेनिंग के दौरान लर्निंग रेट को तेज़ी से कम किया जाता है. इस रणनीति से, मॉडल को ट्रेनिंग डेटा के हिसाब से ओवरफ़िट होने से रोकने में मदद मिलती है. साथ ही, सामान्यीकरण को बेहतर बनाया जा सकता है.
उदाहरण के साथ डाले गए प्रॉम्प्ट
एक ऐसा प्रॉम्प्ट जिसमें एक से ज़्यादा ("कुछ") उदाहरण शामिल हों. इनसे यह पता चलता है कि लार्ज लैंग्वेज मॉडल को कैसे जवाब देना चाहिए. उदाहरण के लिए, यहां दिए गए लंबे प्रॉम्प्ट में दो उदाहरण दिए गए हैं. इनमें लार्ज लैंग्वेज मॉडल को यह बताया गया है कि किसी क्वेरी का जवाब कैसे देना है.
एक प्रॉम्ट के हिस्से | नोट |
---|---|
चुने गए देश की आधिकारिक मुद्रा क्या है? | वह सवाल जिसका जवाब आपको एलएलएम से चाहिए. |
फ़्रांस: EUR | एक उदाहरण. |
यूनाइटेड किंगडम: GBP | एक और उदाहरण. |
भारत: | असल क्वेरी. |
आम तौर पर, फ़्यू-शॉट प्रॉम्प्ट से ज़ीरो-शॉट प्रॉम्प्ट और वन-शॉट प्रॉम्प्ट की तुलना में बेहतर नतीजे मिलते हैं. हालांकि, फ़्यू-शॉट प्रॉम्प्ट (उदाहरण के साथ डाले गए प्रॉम्प्ट) के लिए, लंबा प्रॉम्प्ट डालना ज़रूरी होता है.
उदाहरण के साथ डाले गए प्रॉम्प्ट, उदाहरण के साथ सीखने का एक तरीका है. इसका इस्तेमाल प्रॉम्प्ट के आधार पर सीखने के लिए किया जाता है.
ज़्यादा जानकारी के लिए, मशीन लर्निंग क्रैश कोर्स में प्रॉम्प्ट इंजीनियरिंग देखें.
फ़ाइन-ट्यूनिंग
किसी खास टास्क के लिए, पहले से ट्रेन किए गए मॉडल पर ट्रेनिंग का दूसरा चरण. इससे मॉडल के पैरामीटर को किसी खास इस्तेमाल के उदाहरण के लिए बेहतर बनाया जाता है. उदाहरण के लिए, कुछ बड़े लैंग्वेज मॉडल के लिए ट्रेनिंग का पूरा क्रम इस तरह है:
- प्री-ट्रेनिंग: किसी लार्ज लैंग्वेज मॉडल को सामान्य डेटासेट के बड़े हिस्से पर ट्रेन करना. जैसे, अंग्रेज़ी भाषा के सभी Wikipedia पेज.
- फ़ाइन-ट्यूनिंग: पहले से ट्रेन किए गए मॉडल को किसी खास टास्क को पूरा करने के लिए ट्रेन करना. जैसे, चिकित्सा से जुड़ी क्वेरी के जवाब देना. फ़ाइन-ट्यूनिंग में आम तौर पर, किसी खास टास्क पर फ़ोकस करने वाले सैकड़ों या हज़ारों उदाहरण शामिल होते हैं.
एक अन्य उदाहरण के तौर पर, किसी बड़े इमेज मॉडल के लिए ट्रेनिंग का पूरा क्रम इस तरह है:
- प्री-ट्रेनिंग: किसी बड़े इमेज मॉडल को सामान्य इमेज के बड़े डेटासेट पर ट्रेन करें. जैसे, Wikimedia Commons में मौजूद सभी इमेज.
- फ़ाइन-ट्यूनिंग: पहले से ट्रेन किए गए मॉडल को किसी खास टास्क को पूरा करने के लिए ट्रेन करें. जैसे, किलर व्हेल की इमेज जनरेट करना.
फ़ाइन-ट्यूनिंग में, यहां दी गई रणनीतियों का कोई भी कॉम्बिनेशन शामिल हो सकता है:
- पहले से ट्रेन किए गए मॉडल के मौजूदा पैरामीटर में सभी बदलाव करना. इसे कभी-कभी फ़ुल फ़ाइन-ट्यूनिंग भी कहा जाता है.
- प्री-ट्रेन किए गए मॉडल के मौजूदा पैरामीटर में से सिर्फ़ कुछ में बदलाव करना. आम तौर पर, आउटपुट लेयर के सबसे नज़दीक वाली लेयर में बदलाव किया जाता है. वहीं, अन्य मौजूदा पैरामीटर में कोई बदलाव नहीं किया जाता. आम तौर पर, इनपुट लेयर के सबसे नज़दीक वाली लेयर में बदलाव नहीं किया जाता. पैरामीटर-इफ़िशिएंट ट्यूनिंग देखें.
- ज़्यादा लेयर जोड़ना. आम तौर पर, ये लेयर आउटपुट लेयर के सबसे करीब मौजूद लेयर के ऊपर जोड़ी जाती हैं.
फ़ाइन-ट्यूनिंग, ट्रांसफ़र लर्निंग का एक तरीका है. इसलिए, फ़ाइन-ट्यूनिंग में, पहले से ट्रेन किए गए मॉडल को ट्रेन करने के लिए इस्तेमाल किए गए लॉस फ़ंक्शन या मॉडल टाइप से अलग लॉस फ़ंक्शन या मॉडल टाइप का इस्तेमाल किया जा सकता है. उदाहरण के लिए, पहले से ट्रेन किए गए बड़े इमेज मॉडल को फ़ाइन-ट्यून करके, रिग्रेशन मॉडल बनाया जा सकता है. यह मॉडल, इनपुट इमेज में मौजूद पक्षियों की संख्या दिखाता है.
फ़ाइन-ट्यूनिंग की तुलना इन शब्दों से करें और इनके बीच अंतर बताएं:
ज़्यादा जानकारी के लिए, मशीन लर्निंग क्रैश कोर्स में फ़ाइन-ट्यूनिंग देखें.
फ़्लैश मॉडल
यह Gemini मॉडल का एक छोटा परिवार है. इसे तेज़ गति और कम लेटेंसी के लिए ऑप्टिमाइज़ किया गया है. Flash मॉडल को कई तरह के ऐप्लिकेशन के लिए डिज़ाइन किया गया है. इनमें तेज़ी से जवाब देना और ज़्यादा थ्रूपुट ज़रूरी होता है.
फ़ाउंडेशन मॉडल
यह एक बहुत बड़ा पहले से ट्रेन किया गया मॉडल है. इसे अलग-अलग तरह के ट्रेनिंग सेट पर ट्रेन किया गया है. फ़ाउंडेशन मॉडल, यहां दिए गए दोनों काम कर सकता है:
- अलग-अलग तरह के अनुरोधों के लिए सही जवाब दे सकता है.
- इसे अन्य फ़ाइन-ट्यूनिंग या पसंद के मुताबिक बनाने के लिए, बेसिक मॉडल के तौर पर इस्तेमाल किया जा सकता है.
दूसरे शब्दों में, फ़ाउंडेशन मॉडल सामान्य तौर पर पहले से ही बहुत कुछ कर सकता है. हालांकि, इसे किसी खास काम के लिए और भी ज़्यादा उपयोगी बनाने के लिए, अपनी पसंद के मुताबिक बनाया जा सकता है.
सफलताओं का फ़्रैक्शन
यह एमएल मॉडल के जनरेट किए गए टेक्स्ट का आकलन करने वाली मेट्रिक है. सफलता की दर, जनरेट किए गए "सफल" टेक्स्ट आउटपुट की संख्या को जनरेट किए गए टेक्स्ट आउटपुट की कुल संख्या से भाग देने पर मिलती है. उदाहरण के लिए, अगर किसी बड़े लैंग्वेज मॉडल ने कोड के 10 ब्लॉक जनरेट किए हैं, जिनमें से पांच सही हैं, तो सही कोड का फ़्रैक्शन 50% होगा.
हालांकि, सफलता की दर का इस्तेमाल आम तौर पर सभी तरह के आंकड़ों में किया जाता है. एमएल में, इस मेट्रिक का इस्तेमाल मुख्य रूप से ऐसे कामों को मेज़र करने के लिए किया जाता है जिनकी पुष्टि की जा सकती है. जैसे, कोड जनरेट करना या गणित की समस्याएं हल करना.
G
Gemini
यह Google के सबसे बेहतरीन एआई मॉडल से बना है. इस इकोसिस्टम में ये शामिल हैं:
- कई Gemini मॉडल.
- Gemini मॉडल के साथ बातचीत करने के लिए इंटरैक्टिव इंटरफ़ेस. उपयोगकर्ता प्रॉम्प्ट टाइप करते हैं और Gemini उन प्रॉम्प्ट के जवाब देता है.
- Gemini के अलग-अलग एपीआई.
- Gemini मॉडल पर आधारित कारोबार से जुड़े अलग-अलग प्रॉडक्ट. उदाहरण के लिए, Gemini for Google Cloud.
Gemini के मॉडल
Google के सबसे बेहतरीन ट्रांसफ़ॉर्मर पर आधारित मल्टीमॉडल. Gemini मॉडल को खास तौर पर एजेंट के साथ इंटिग्रेट करने के लिए डिज़ाइन किया गया है.
उपयोगकर्ता, Gemini मॉडल के साथ कई तरह से इंटरैक्ट कर सकते हैं. जैसे, इंटरैक्टिव डायलॉग इंटरफ़ेस और एसडीके के ज़रिए.
जेमा
यह एक लाइटवेट ओपन मॉडल है. इसे Gemini मॉडल में इस्तेमाल की गई रिसर्च और टेक्नोलॉजी का इस्तेमाल करके बनाया गया है. Gemma के कई अलग-अलग मॉडल उपलब्ध हैं. हर मॉडल में अलग-अलग सुविधाएं मिलती हैं. जैसे, विज़न, कोड, और निर्देशों का पालन करना. ज़्यादा जानकारी के लिए, Gemma देखें.
GenAI या genAI
जनरेटिव एआई का संक्षिप्त नाम.
जनरेट किया गया टेक्स्ट
आम तौर पर, एमएल मॉडल से मिलने वाला टेक्स्ट. लार्ज लैंग्वेज मॉडल का आकलन करते समय, कुछ मेट्रिक जनरेट किए गए टेक्स्ट की तुलना रेफ़रंस टेक्स्ट से करती हैं. उदाहरण के लिए, मान लें कि आपको यह पता लगाना है कि कोई एमएल मॉडल, फ़्रेंच से डच में कितनी अच्छी तरह से अनुवाद करता है. इस मामले में:
- जनरेट किया गया टेक्स्ट, डच भाषा में किया गया अनुवाद है. यह अनुवाद, एमएल मॉडल से मिला है.
- रेफ़रंस टेक्स्ट, डच भाषा में किया गया वह अनुवाद होता है जिसे कोई व्यक्ति या सॉफ़्टवेयर करता है.
ध्यान दें कि कुछ आकलन रणनीतियों में रेफ़रंस टेक्स्ट शामिल नहीं होता है.
जनरेटिव एआई
यह एक ऐसा नया फ़ील्ड है जिसमें बदलाव की काफ़ी संभावनाएं हैं. हालांकि, इसकी कोई आधिकारिक परिभाषा नहीं है. हालांकि, ज़्यादातर विशेषज्ञ इस बात से सहमत हैं कि जनरेटिव एआई मॉडल, ऐसा कॉन्टेंट बना सकते हैं ("जनरेट" कर सकते हैं) जो इन सभी शर्तों को पूरा करता हो:
- जटिल
- समझ में आने वाला
- मूल
जनरेटिव एआई के उदाहरण:
- लार्ज लैंग्वेज मॉडल, जो ओरिजनल टेक्स्ट जनरेट कर सकते हैं और सवालों के जवाब दे सकते हैं.
- इमेज जनरेट करने वाला मॉडल, जो यूनीक इमेज जनरेट कर सकता है.
- ऑडियो और संगीत जनरेट करने वाले मॉडल. ये मॉडल, ओरिजनल संगीत कंपोज़ कर सकते हैं या बिलकुल असली जैसी आवाज़ जनरेट कर सकते हैं.
- वीडियो जनरेट करने वाले मॉडल, जो ओरिजनल वीडियो जनरेट कर सकते हैं.
एलएसटीएम और आरएनएन जैसी कुछ पुरानी टेक्नोलॉजी भी ओरिजनल और तार्किक कॉन्टेंट जनरेट कर सकती हैं. कुछ विशेषज्ञ, इन पुरानी टेक्नोलॉजी को जनरेटिव एआई मानते हैं. वहीं, कुछ का मानना है कि जनरेटिव एआई को इन पुरानी टेक्नोलॉजी के मुकाबले ज़्यादा जटिल आउटपुट की ज़रूरत होती है.
इसकी तुलना अनुमान लगाने वाली एमएल से करें.
गोल्डन रिस्पॉन्स
ऐसा जवाब जो अच्छा माना जाता है. उदाहरण के लिए, यहां दिए गए प्रॉम्प्ट के लिए:
2 + 2
हमें उम्मीद है कि सबसे अच्छा जवाब यह होगा:
4
H
लोगों के ज़रिए आकलन
यह एक ऐसी प्रोसेस है जिसमें लोग, मशीन लर्निंग मॉडल के आउटपुट की क्वालिटी का आकलन करते हैं. उदाहरण के लिए, दो भाषाओं का ज्ञान रखने वाले लोगों से, मशीन लर्निंग ट्रांसलेशन मॉडल की क्वालिटी का आकलन कराना. मैन्युअल तरीके से आकलन करना, उन मॉडल का आकलन करने के लिए खास तौर पर फ़ायदेमंद होता है जिनके कोई एक सही जवाब नहीं होता.
इसकी तुलना अपने-आप होने वाले आकलन और ऑटोरेटर के आकलन से करें.
ह्यूमन इन द लूप (एचआईटीएल)
यह एक मुहावरा है, जिसका मतलब इनमें से कोई भी हो सकता है:
- जनरेटिव एआई के आउटपुट को गंभीरता से या संदेह की नज़र से देखने की नीति.
- यह एक रणनीति या सिस्टम है. इससे यह पक्का किया जाता है कि लोग, मॉडल के व्यवहार को बेहतर बनाने, उसका आकलन करने, और उसे बेहतर बनाने में मदद करें. एआई के साथ इंसान को शामिल करने से, एआई को मशीन इंटेलिजेंस और मैन्युअल जानकारी, दोनों से फ़ायदा मिलता है. उदाहरण के लिए, एक ऐसा सिस्टम जिसमें एआई कोड जनरेट करता है और सॉफ़्टवेयर इंजीनियर उसकी समीक्षा करते हैं, ह्यूमन-इन-द-लूप सिस्टम कहलाता है.
I
कॉन्टेक्स्ट के हिसाब से सीखने की सुविधा
उदाहरण के साथ डाले गए प्रॉम्प्ट के लिए समानार्थी शब्द.
अनुमान
ट्रेडिशनल मशीन लर्निंग में, बिना लेबल वाले उदाहरणों पर ट्रेन किए गए मॉडल को लागू करके अनुमान लगाने की प्रोसेस. ज़्यादा जानने के लिए, एमएल के बारे में जानकारी देने वाले कोर्स में निगरानी में की जाने वाली लर्निंग सेक्शन देखें.
लार्ज लैंग्वेज मॉडल में, अनुमान लगाने की प्रोसेस का इस्तेमाल, ट्रेनिंग पा चुके मॉडल की मदद से किया जाता है. इससे, इनपुट प्रॉम्प्ट के लिए जवाब जनरेट किया जाता है.
आंकड़ों में अनुमान का मतलब कुछ अलग होता है. ज़्यादा जानकारी के लिए, सांख्यिकीय अनुमान के बारे में Wikipedia लेख पढ़ें.
निर्देशों के मुताबिक मॉडल को फ़ाइन-ट्यून करना
यह फ़ाइन-ट्यूनिंग का एक तरीका है. इससे जनरेटिव एआई मॉडल को निर्देशों का पालन करने में मदद मिलती है. निर्देशों के हिसाब से मॉडल को ट्यून करने के लिए, उसे निर्देशों वाले कई प्रॉम्प्ट पर ट्रेन किया जाता है. आम तौर पर, इनमें अलग-अलग तरह के टास्क शामिल होते हैं. इसके बाद, निर्देशों के मुताबिक काम करने वाला मॉडल, अलग-अलग टास्क के लिए ज़ीरो-शॉट प्रॉम्प्ट के जवाब जनरेट करता है.
इनके साथ तुलना करें:
L
प्रतीक्षा अवधि
किसी मॉडल को इनपुट प्रोसेस करने और जवाब जनरेट करने में लगने वाला समय. ज़्यादा समय में जनरेट होने वाले जवाब को जनरेट होने में, कम समय में जनरेट होने वाले जवाब की तुलना में ज़्यादा समय लगता है.
लार्ज लैंग्वेज मॉडल की लेटेन्सी पर इन बातों का असर पड़ता है:
- इनपुट और आउटपुट [token] की लंबाई
- मॉडल की जटिलता
- वह इन्फ़्रास्ट्रक्चर जिस पर मॉडल काम करता है
तेज़ी से काम करने वाले और लोगों के लिए इस्तेमाल में आसान ऐप्लिकेशन बनाने के लिए, लेटेन्सी को ऑप्टिमाइज़ करना ज़रूरी है.
LLM
लार्ज लैंग्वेज मॉडल का संक्षिप्त नाम.
एलएलएम के आकलन (इवैल)
यह मेट्रिक और बेंचमार्क का एक सेट है. इसका इस्तेमाल, लार्ज लैंग्वेज मॉडल (एलएलएम) की परफ़ॉर्मेंस का आकलन करने के लिए किया जाता है. एलएलएम के आकलन के लिए, ये काम किए जाते हैं:
- शोधकर्ताओं को उन क्षेत्रों की पहचान करने में मदद करना जहां एलएलएम को बेहतर बनाने की ज़रूरत है.
- इनसे अलग-अलग एलएलएम की तुलना करने और किसी टास्क के लिए सबसे अच्छे एलएलएम की पहचान करने में मदद मिलती है.
- यह पक्का करने में मदद करना कि एलएलएम का इस्तेमाल सुरक्षित और ज़िम्मेदारी से किया जा रहा है.
ज़्यादा जानकारी के लिए, मशीन लर्निंग क्रैश कोर्स में लार्ज लैंग्वेज मॉडल (एलएलएम) देखें.
LoRA
लो-रैंक अडैप्टेबिलिटी का संक्षिप्त नाम.
लो-रैंक अडैप्टेबिलिटी (LoRA)
यह फ़ाइन ट्यूनिंग के लिए, पैरामीटर-इफ़िशिएंट तकनीक है. यह मॉडल के पहले से ट्रेन किए गए वेट को "फ़्रीज़" कर देती है, ताकि उन्हें बदला न जा सके. इसके बाद, यह मॉडल में ट्रेनिंग के लिए उपलब्ध वेट का एक छोटा सेट डालती है. ट्रेन किए जा सकने वाले वज़न का यह सेट, बेस मॉडल से काफ़ी छोटा होता है. इसे "अपडेट मैट्रिक्स" भी कहा जाता है. इसलिए, इसे ट्रेन करने में काफ़ी कम समय लगता है.
LoRA से ये फ़ायदे मिलते हैं:
- इससे उस डोमेन के लिए मॉडल के अनुमानों की क्वालिटी बेहतर होती है जहां फ़ाइन ट्यूनिंग लागू की जाती है.
- यह उन तकनीकों की तुलना में ज़्यादा तेज़ी से फ़ाइन-ट्यून होता है जिनके लिए, मॉडल के सभी पैरामीटर को फ़ाइन-ट्यून करने की ज़रूरत होती है.
- यह अनुमान की कंप्यूटेशनल लागत को कम करता है. इसके लिए, यह एक ही बेस मॉडल को शेयर करने वाले कई खास मॉडल को एक साथ सेवा देने की सुविधा चालू करता है.
M
मशीन से अनुवाद
किसी सॉफ़्टवेयर (आम तौर पर, मशीन लर्निंग मॉडल) का इस्तेमाल करके, टेक्स्ट को एक भाषा से दूसरी भाषा में बदलना. उदाहरण के लिए, अंग्रेज़ी से जापानी में बदलना.
k पर औसत सटीक दर (mAP@k)
यह पुष्टि करने वाले डेटासेट में, सभी k पर औसत सटीक स्कोर का सांख्यिकीय माध्य होता है. के पर औसत सटीक दर का इस्तेमाल, सुझाव देने वाले सिस्टम से जनरेट किए गए सुझावों की क्वालिटी का आकलन करने के लिए किया जाता है.
हालांकि, "औसत" शब्द का इस्तेमाल दो बार किया गया है, लेकिन मेट्रिक का नाम सही है. आखिरकार, यह मेट्रिक कई k पर औसत प्रेसिज़न वैल्यू का औसत निकालती है.
मिश्रण मॉडल
यह एक ऐसी स्कीम है जिसकी मदद से, न्यूरल नेटवर्क की परफ़ॉर्मेंस को बेहतर बनाया जाता है. इसके लिए, किसी दिए गए इनपुट टोकन या उदाहरण को प्रोसेस करने के लिए, इसके सिर्फ़ कुछ पैरामीटर (जिन्हें एक्सपर्ट कहा जाता है) का इस्तेमाल किया जाता है. गेटेड नेटवर्क, हर इनपुट टोकन या उदाहरण को सही विशेषज्ञ(विशेषज्ञों) तक पहुंचाता है.
ज़्यादा जानकारी के लिए, इनमें से कोई एक पेपर देखें:
- Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
- एक्सपर्ट चॉइस राउटिंग के साथ मिक्सचर-ऑफ़-एक्सपर्ट
एमएमआईटी
मल्टीमॉडल इंस्ट्रक्शन-ट्यूनिंग का संक्षिप्त नाम.
मॉडल कैस्केडिंग
यह एक ऐसा सिस्टम है जो किसी खास अनुमान लगाने वाली क्वेरी के लिए, सबसे सही मॉडल चुनता है.
मान लें कि आपके पास अलग-अलग साइज़ के मॉडल का एक ग्रुप है. इसमें बहुत बड़े मॉडल (जिनमें बहुत सारे पैरामीटर होते हैं) से लेकर बहुत छोटे मॉडल (जिनमें बहुत कम पैरामीटर होते हैं) शामिल हैं. बहुत बड़े मॉडल, छोटे मॉडल की तुलना में अनुमान के समय ज़्यादा कंप्यूटेशनल संसाधनों का इस्तेमाल करते हैं. हालांकि, बहुत बड़े मॉडल, छोटे मॉडल की तुलना में ज़्यादा जटिल अनुरोधों का अनुमान लगा सकते हैं. मॉडल कैस्केडिंग से, अनुमान लगाने के लिए की गई क्वेरी की जटिलता का पता चलता है. इसके बाद, अनुमान लगाने के लिए सही मॉडल चुना जाता है. मॉडल कैस्केडिंग का मुख्य मकसद, अनुमान लगाने की लागत को कम करना है. इसके लिए, आम तौर पर छोटे मॉडल चुने जाते हैं. साथ ही, ज़्यादा मुश्किल क्वेरी के लिए ही बड़े मॉडल चुने जाते हैं.
मान लें कि कोई छोटा मॉडल किसी फ़ोन पर काम करता है और उस मॉडल का बड़ा वर्शन किसी रिमोट सर्वर पर काम करता है. मॉडल कैस्केडिंग की मदद से, लागत और लेटेंसी को कम किया जा सकता है. ऐसा इसलिए, क्योंकि छोटे मॉडल को सामान्य अनुरोधों को हैंडल करने की अनुमति दी जाती है. साथ ही, रिमोट मॉडल को सिर्फ़ मुश्किल अनुरोधों को हैंडल करने के लिए कॉल किया जाता है.
मॉडल राउटर भी देखें.
मॉडल राऊटर
यह एल्गोरिदम, मॉडल कैस्केडिंग में अनुमान के लिए सबसे सही मॉडल तय करता है. मॉडल राउटर, आम तौर पर एक मशीन लर्निंग मॉडल होता है. यह धीरे-धीरे यह सीखता है कि किसी इनपुट के लिए सबसे अच्छा मॉडल कैसे चुना जाए. हालांकि, मॉडल राउटर कभी-कभी एक आसान, नॉन-मशीन लर्निंग एल्गोरिदम हो सकता है.
MOE
मिक्सचर ऑफ़ एक्सपर्ट का संक्षिप्त नाम.
MT
मशीन से अनुवाद के लिए इस्तेमाल किया जाने वाला संक्षिप्त नाम.
नहीं
Nano
यह Gemini का छोटा मॉडल है. इसे डिवाइस पर इस्तेमाल करने के लिए डिज़ाइन किया गया है. ज़्यादा जानकारी के लिए, Gemini Nano लेख पढ़ें.
Pro और Ultra के बारे में भी जानें.
कोई भी जवाब सही नहीं है (नोरा)
ऐसा प्रॉम्प्ट जिसके कई सही जवाब हो सकते हैं. उदाहरण के लिए, इस प्रॉम्प्ट का कोई एक सही जवाब नहीं है:
मुझे हाथियों के बारे में कोई मज़ेदार चुटकुला सुनाओ.
एक से ज़्यादा सही जवाब वाले सवालों के जवाबों का आकलन करना, एक सही जवाब वाले सवालों के जवाबों का आकलन करने की तुलना में ज़्यादा मुश्किल होता है. उदाहरण के लिए, हाथी के बारे में किसी चुटकुले का आकलन करने के लिए, यह तय करने का एक व्यवस्थित तरीका होना चाहिए कि चुटकुला कितना मज़ेदार है.
नोरा
कोई एक सही जवाब नहीं है के लिए इस्तेमाल किया जाने वाला छोटा नाम.
Notebook LM
यह Gemini पर आधारित एक टूल है. इसकी मदद से लोग दस्तावेज़ अपलोड कर सकते हैं. इसके बाद, वे प्रॉम्प्ट का इस्तेमाल करके, उन दस्तावेज़ों के बारे में सवाल पूछ सकते हैं, उनकी खास जानकारी पा सकते हैं या उन्हें व्यवस्थित कर सकते हैं. उदाहरण के लिए, कोई लेखक कई छोटी कहानियां अपलोड कर सकता है. इसके बाद, वह NotebookLM से इन कहानियों के सामान्य विषयों का पता लगाने या यह पता लगाने के लिए कह सकता है कि इनमें से कौनसी कहानी पर सबसे अच्छी फ़िल्म बनाई जा सकती है.
O
एक सही जवाब (ओआरए)
ऐसा प्रॉम्प्ट जिसका एक ही सही जवाब हो. उदाहरण के लिए, इस प्रॉम्प्ट पर विचार करें:
सही या गलत: शनि, मंगल से बड़ा है.
सिर्फ़ सही जवाब दिया जा सकता है.
कोई एक सही जवाब नहीं है से अलग.
वन-शॉट प्रॉम्प्ट
एक ऐसा प्रॉम्प्ट जिसमें एक उदाहरण दिया गया हो. इससे यह पता चलता है कि लार्ज लैंग्वेज मॉडल को किस तरह जवाब देना चाहिए. उदाहरण के लिए, यहां दिए गए प्रॉम्प्ट में एक उदाहरण शामिल है. इसमें लार्ज लैंग्वेज मॉडल को यह बताया गया है कि उसे किसी क्वेरी का जवाब किस तरह देना चाहिए.
एक प्रॉम्ट के हिस्से | नोट |
---|---|
चुने गए देश की आधिकारिक मुद्रा क्या है? | वह सवाल जिसका जवाब आपको एलएलएम से चाहिए. |
फ़्रांस: EUR | एक उदाहरण. |
भारत: | असल क्वेरी. |
एक बार में जवाब पाने के लिए प्रॉम्प्ट लिखना की तुलना इन शब्दों से करें और इनमें अंतर बताएं:
ओआरए
यह एक सही जवाब का संक्षिप्त रूप है.
P
पैरामीटर-इफ़िशिएंट ट्यूनिंग
यह एक ऐसी तकनीक है जिसकी मदद से, फ़ुल फ़ाइन-ट्यूनिंग की तुलना में, लार्ज प्री-ट्रेन किए गए लैंग्वेज मॉडल (पीएलएम) को ज़्यादा असरदार तरीके से फ़ाइन-ट्यून किया जा सकता है. पैरामीटर-इफ़िशिएंट ट्यूनिंग में, फ़ुल फ़ाइन-ट्यूनिंग की तुलना में काफ़ी कम पैरामीटर को फ़ाइन-ट्यून किया जाता है. हालांकि, आम तौर पर इससे ऐसा लार्ज लैंग्वेज मॉडल तैयार होता है जो फ़ुल फ़ाइन-ट्यूनिंग से बनाए गए लार्ज लैंग्वेज मॉडल की तरह ही (या लगभग उतना ही) काम करता है.
पैरामीटर-इफ़िशिएंट फ़ाइन-ट्यूनिंग की तुलना इनके साथ करें:
पैरामीटर-इफ़िशिएंट ट्यूनिंग को पैरामीटर-इफ़िशिएंट फ़ाइन-ट्यूनिंग भी कहा जाता है.
Pax
यह एक प्रोग्रामिंग फ़्रेमवर्क है. इसे बड़े पैमाने पर न्यूरल नेटवर्क मॉडल को ट्रेन करने के लिए डिज़ाइन किया गया है. ये मॉडल इतने बड़े होते हैं कि ये कई टीपीयू ऐक्सलरेटर चिप स्लाइस या पॉड तक फैले होते हैं.
Pax को Flax पर बनाया गया है. वहीं, Flax को JAX पर बनाया गया है.
PLM
पहले से ट्रेन किए गए लैंग्वेज मॉडल का संक्षिप्त नाम.
पोस्ट-ट्रेनिंग मॉडल
यह एक ऐसा शब्द है जिसे आम तौर पर पहले से ट्रेन किए गए मॉडल के लिए इस्तेमाल किया जाता है. इस मॉडल को पोस्ट-प्रोसेसिंग के बाद इस्तेमाल किया जाता है. जैसे, इनमें से एक या एक से ज़्यादा काम किए जाते हैं:
पहले से ट्रेन किया गया मॉडल
हालांकि, इस शब्द का इस्तेमाल किसी भी ट्रेन किए गए मॉडल या ट्रेन किए गए एम्बेडिंग वेक्टर के लिए किया जा सकता है, लेकिन अब आम तौर पर प्री-ट्रेन किए गए मॉडल का मतलब, ट्रेन किया गया लार्ज लैंग्वेज मॉडल या ट्रेन किए गए जनरेटिव एआई मॉडल होता है.
बेस मॉडल और फ़ाउंडेशन मॉडल के बारे में भी जानें.
प्री-ट्रेनिंग
किसी मॉडल को बड़े डेटासेट पर ट्रेन करना. पहले से ट्रेन किए गए कुछ मॉडल, बहुत बड़े होते हैं और उन्हें इस्तेमाल करने में मुश्किल होती है. इसलिए, आम तौर पर उन्हें बेहतर बनाने के लिए, अतिरिक्त ट्रेनिंग देनी पड़ती है. उदाहरण के लिए, एमएल विशेषज्ञ किसी बड़े टेक्स्ट डेटासेट पर लार्ज लैंग्वेज मॉडल को पहले से ही ट्रेन कर सकते हैं. जैसे, Wikipedia के सभी अंग्रेज़ी पेज. प्री-ट्रेनिंग के बाद, मॉडल को बेहतर बनाने के लिए इनमें से किसी भी तकनीक का इस्तेमाल किया जा सकता है:
- डिस्टिलेशन
- फ़ाइन-ट्यूनिंग
- निर्देशों के मुताबिक जवाब देने की सुविधा
- पैरामीटर-इफ़िशिएंट ट्यूनिंग
- प्रॉम्प्ट-ट्यूनिंग
प्रो
यह Gemini मॉडल है. इसमें Ultra से कम, लेकिन Nano से ज़्यादा पैरामीटर होते हैं. ज़्यादा जानकारी के लिए, Gemini Pro देखें.
prompt
किसी लार्ज लैंग्वेज मॉडल में इनपुट के तौर पर डाला गया कोई भी टेक्स्ट, ताकि मॉडल को किसी खास तरीके से काम करने के लिए तैयार किया जा सके. प्रॉम्प्ट, एक छोटे वाक्यांश से लेकर कितना भी लंबा हो सकता है. उदाहरण के लिए, किसी उपन्यास का पूरा टेक्स्ट. प्रॉम्प्ट को कई कैटगरी में बांटा गया है. इनमें से कुछ कैटगरी यहां दी गई टेबल में दिखाई गई हैं:
प्रॉम्प्ट कैटगरी | उदाहरण | नोट |
---|---|---|
सवाल | कबूतर कितनी तेज़ उड़ सकता है? | |
निर्देश | आर्बिट्राज के बारे में एक मज़ेदार कविता लिखो. | ऐसा प्रॉम्प्ट जिसमें लार्ज लैंग्वेज मॉडल को कोई काम करने के लिए कहा गया हो. |
उदाहरण | मार्कडाउन कोड को एचटीएमएल में बदलें. उदाहरण के लिए:
मार्कडाउन: * सूची का आइटम एचटीएमएल: <ul> <li>सूची का आइटम</li> </ul> |
इस उदाहरण प्रॉम्प्ट में पहला वाक्य, निर्देश है. प्रॉम्प्ट का बाकी हिस्सा उदाहरण है. |
भूमिका | फ़िज़िक्स में पीएचडी करने वाले व्यक्ति को बताओ कि मशीन लर्निंग ट्रेनिंग में ग्रेडिएंट डिसेंट का इस्तेमाल क्यों किया जाता है. | वाक्य के पहले हिस्से में निर्देश दिया गया है. "भौतिक विज्ञान में पीएचडी करने वाले व्यक्ति" वाक्यांश में भूमिका के बारे में बताया गया है. |
मॉडल को पूरा करने के लिए कुछ हद तक इनपुट दिया गया है | यूनाइटेड किंगडम के प्रधानमंत्री का आधिकारिक निवास | इनपुट प्रॉम्प्ट का कुछ हिस्सा अचानक खत्म हो सकता है. जैसे, इस उदाहरण में हुआ है. इसके अलावा, यह अंडरस्कोर से भी खत्म हो सकता है. |
जनरेटिव एआई मॉडल, किसी प्रॉम्प्ट का जवाब टेक्स्ट, कोड, इमेज, एम्बेडिंग, वीडियो…लगभग किसी भी फ़ॉर्मैट में दे सकता है.
प्रॉम्प्ट के आधार पर लर्निंग
यह कुछ मॉडल की एक ऐसी सुविधा है जिसकी मदद से वे टेक्स्ट इनपुट (प्रॉम्प्ट) के हिसाब से अपने व्यवहार में बदलाव कर सकते हैं. प्रॉम्प्ट के आधार पर सीखने के सामान्य पैराडाइम में, लार्ज लैंग्वेज मॉडल, टेक्स्ट जनरेट करके किसी प्रॉम्प्ट का जवाब देता है. उदाहरण के लिए, मान लें कि कोई उपयोगकर्ता यह प्रॉम्प्ट डालता है:
न्यूटन के गति के तीसरे नियम के बारे में खास जानकारी दो.
प्रॉम्प्ट के आधार पर सीखने की क्षमता रखने वाले मॉडल को, खास तौर पर पिछले प्रॉम्प्ट का जवाब देने के लिए ट्रेन नहीं किया जाता है. इसके बजाय, मॉडल को फ़िज़िक्स के बारे में बहुत सारे तथ्यों, भाषा के सामान्य नियमों, और आम तौर पर काम के जवाबों के बारे में बहुत कुछ "पता" होता है. यह जानकारी, (उम्मीद है कि) काम का जवाब देने के लिए काफ़ी है. लोगों से मिले सुझाव, शिकायत या राय ("जवाब बहुत मुश्किल था." या "रिएक्शन क्या होता है?") की मदद से, प्रॉम्प्ट पर आधारित कुछ लर्निंग सिस्टम, अपने जवाबों को धीरे-धीरे बेहतर बना पाते हैं.
प्रॉम्प्ट डिज़ाइन
प्रॉम्प्ट इंजीनियरिंग का समानार्थी शब्द.
प्रॉम्प्ट इंजीनियरिंग
प्रॉम्प्ट बनाने की कला, ताकि लार्ज लैंग्वेज मॉडल से मनमुताबिक जवाब मिल सकें. इंसान, प्रॉम्प्ट इंजीनियरिंग करते हैं. लार्ज लैंग्वेज मॉडल से काम के जवाब पाने के लिए, अच्छी तरह से स्ट्रक्चर किए गए प्रॉम्प्ट लिखना ज़रूरी है. प्रॉम्प्ट इंजीनियरिंग कई बातों पर निर्भर करती है. जैसे:
- लार्ज लैंग्वेज मॉडल को प्री-ट्रेन करने के लिए इस्तेमाल किया गया डेटासेट. साथ ही, शायद इसे फ़ाइन-ट्यून करने के लिए भी इस्तेमाल किया गया हो.
- तापमान और अन्य डिकोडिंग पैरामीटर, जिनका इस्तेमाल मॉडल जवाब जनरेट करने के लिए करता है.
प्रॉम्प्ट डिज़ाइन, प्रॉम्प्ट इंजीनियरिंग का दूसरा नाम है.
मददगार प्रॉम्प्ट लिखने के बारे में ज़्यादा जानने के लिए, प्रॉम्प्ट डिज़ाइन के बारे में बुनियादी जानकारी देखें.
प्रॉम्प्ट सेट
लार्ज लैंग्वेज मॉडल का आकलन करने के लिए, प्रॉम्प्ट का ग्रुप. उदाहरण के लिए, इस इमेज में तीन प्रॉम्प्ट वाला एक प्रॉम्प्ट सेट दिखाया गया है:
अच्छे प्रॉम्प्ट सेट में, प्रॉम्प्ट का "बड़ा" कलेक्शन होता है. इससे लार्ज लैंग्वेज मॉडल की सुरक्षा और मददगार होने का पूरी तरह से आकलन किया जा सकता है.
जवाबों का सेट भी देखें.
प्रॉम्प्ट ट्यूनिंग
पैरामीटर के हिसाब से बेहतर तरीके से ट्यून करने का तरीका. यह एक "प्रीफ़िक्स" सीखता है, जिसे सिस्टम, असल प्रॉम्प्ट से पहले जोड़ता है.
प्रॉम्प्ट ट्यूनिंग का एक तरीका, प्रीफ़िक्स ट्यूनिंग कहलाता है. इसमें प्रीफ़िक्स को हर लेयर में जोड़ा जाता है. इसके उलट, ज़्यादातर प्रॉम्प्ट ट्यूनिंग में सिर्फ़ इनपुट लेयर में प्रीफ़िक्स जोड़ा जाता है.
R
रेफ़रंस टेक्स्ट
किसी विशेषज्ञ का प्रॉम्प्ट के जवाब में दिया गया सुझाव. उदाहरण के लिए, यह प्रॉम्प्ट दिया गया है:
"आपका नाम क्या है?" सवाल का अंग्रेज़ी से फ़्रेंच में अनुवाद करो.
किसी विशेषज्ञ का जवाब ऐसा हो सकता है:
आपका नाम क्या है?
अलग-अलग मेट्रिक (जैसे, ROUGE) से यह पता चलता है कि रेफ़रंस टेक्स्ट, एमएल मॉडल के जनरेट किए गए टेक्स्ट से कितना मेल खाता है.
लोगों के सुझाव पर आधारित रीइन्फ़ोर्समेंट लर्निंग (आरएलएचएफ़)
मॉडल के जवाबों की क्वालिटी को बेहतर बनाने के लिए, लोगों से मिले सुझाव/राय या शिकायत का इस्तेमाल करना. उदाहरण के लिए, RLHF की मदद से, लोगों से यह पूछा जा सकता है कि वे किसी मॉडल के जवाब की क्वालिटी को 👍 या 👎 इमोजी से रेट करें. इसके बाद, सिस्टम उस सुझाव/राय या शिकायत के आधार पर, आने वाले समय में अपने जवाबों में बदलाव कर सकता है.
जवाब
टेक्स्ट, इमेज, ऑडियो या वीडियो, जिसे जनरेटिव एआई मॉडल अनुमानित करता है. दूसरे शब्दों में, प्रॉम्प्ट, जनरेटिव एआई मॉडल के लिए इनपुट होता है और जवाब, आउटपुट होता है.
जवाबों का सेट
लार्ज लैंग्वेज मॉडल, प्रॉम्प्ट सेट के इनपुट के आधार पर जवाबों का कलेक्शन दिखाता है.
भूमिका के हिसाब से प्रॉम्प्ट देना
यह एक प्रॉम्प्ट होता है. आम तौर पर, इसकी शुरुआत तुम सर्वनाम से होती है. इसमें जनरेटिव एआई मॉडल को यह निर्देश दिया जाता है कि जवाब जनरेट करते समय, वह किसी व्यक्ति या भूमिका के तौर पर काम करे. रोल प्रॉम्प्टिंग से, जनरेटिव एआई मॉडल को सही "माइंडसेट" में लाने में मदद मिल सकती है, ताकि वह ज़्यादा काम का जवाब जनरेट कर सके. उदाहरण के लिए, आपको जिस तरह का जवाब चाहिए उसके हिसाब से, भूमिका के बारे में बताने वाले इनमें से कोई भी प्रॉम्प्ट सही हो सकता है:
आपके पास कंप्यूटर साइंस में पीएचडी की डिग्री है.
आप एक सॉफ़्टवेयर इंजीनियर हैं. आपको प्रोग्रामिंग सीखने वाले नए छात्र-छात्राओं को Python के बारे में विस्तार से जानकारी देना पसंद है.
तुम एक ऐक्शन हीरो हो और तुम्हारे पास प्रोग्रामिंग की खास तरह की स्किल हैं. मुझे भरोसा दिलाओ कि तुम Python की किसी लिस्ट में कोई आइटम ढूंढ सकते हो.
S
सॉफ़्ट प्रॉम्प्ट ट्यूनिंग
यह किसी टास्क के लिए, लार्ज लैंग्वेज मॉडल को ट्यून करने की एक तकनीक है. इसमें, फ़ाइन-ट्यूनिंग की तरह ज़्यादा संसाधनों की ज़रूरत नहीं होती. मॉडल में मौजूद सभी वज़न को फिर से ट्रेनिंग देने के बजाय, सॉफ्ट प्रॉम्प्ट ट्यूनिंग एक ही लक्ष्य को हासिल करने के लिए, प्रॉम्प्ट को अपने-आप अडजस्ट कर देती है.
टेक्स्ट वाले प्रॉम्प्ट के लिए, सॉफ़्ट प्रॉम्प्ट ट्यूनिंग आम तौर पर प्रॉम्प्ट में अतिरिक्त टोकन एम्बेडिंग जोड़ती है. साथ ही, इनपुट को ऑप्टिमाइज़ करने के लिए बैकप्रोपैगेशन का इस्तेमाल करती है.
"हार्ड" प्रॉम्प्ट में टोकन एम्बेडिंग के बजाय असल टोकन होते हैं.
T
तापमान
यह एक हाइपरपैरामीटर है. यह मॉडल के आउटपुट में रैंडमनेस की डिग्री को कंट्रोल करता है. तापमान जितना ज़्यादा होगा, आउटपुट उतना ही ज़्यादा रैंडम होगा. वहीं, तापमान जितना कम होगा, आउटपुट उतना ही कम रैंडम होगा.
सबसे सही तापमान चुनना, ऐप्लिकेशन और/या स्ट्रिंग वैल्यू पर निर्भर करता है.
U
Ultra
सबसे ज़्यादा पैरामीटर वाला Gemini मॉडल. ज़्यादा जानकारी के लिए, Gemini Ultra लेख पढ़ें.
V
शीर्ष बिंदु
यह Google Cloud का एआई और मशीन लर्निंग प्लैटफ़ॉर्म है. Vertex, एआई ऐप्लिकेशन बनाने, डिप्लॉय करने, और मैनेज करने के लिए टूल और इन्फ़्रास्ट्रक्चर उपलब्ध कराता है. इसमें Gemini मॉडल का ऐक्सेस भी शामिल है.Z
ज़ीरो-शॉट प्रॉम्प्ट
ऐसा प्रॉम्प्ट जिसमें यह नहीं बताया गया है कि आपको लार्ज लैंग्वेज मॉडल से किस तरह का जवाब चाहिए. उदाहरण के लिए:
एक प्रॉम्ट के हिस्से | नोट |
---|---|
चुने गए देश की आधिकारिक मुद्रा क्या है? | वह सवाल जिसका जवाब आपको एलएलएम से चाहिए. |
भारत: | असल क्वेरी. |
लार्ज लैंग्वेज मॉडल, इनमें से कोई भी जवाब दे सकता है:
- रुपया
- INR
- ₹
- भारतीय रुपया
- रुपया
- भारतीय रुपया
सभी जवाब सही हैं, हालांकि आपको कोई खास फ़ॉर्मैट पसंद आ सकता है.
ज़ीरो-शॉट प्रॉम्प्टिंग की तुलना इन शब्दों से करें और इनमें अंतर बताएं: