Justiça
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
A imparcialidade aborda os possíveis resultados diferentes que os usuários finais podem ter relacionados a características sensíveis, como raça, renda, orientação sexual ou gênero, por meio da tomada de decisões algorítmicas. Por exemplo, um algoritmo de contratação pode ter vieses a favor ou contra candidatos com nomes associados a um gênero ou etnia específica?
Saiba mais sobre como os sistemas de aprendizado de máquina podem ser suscetíveis a vieses humanos neste vídeo:
Para um exemplo do mundo real, leia sobre como produtos como a Pesquisa Google e o Google Fotos melhoraram a diversidade de representação de tons de pele com a Escala Monk de tons de pele.
Existem métodos confiáveis para identificar, medir e reduzir o viés nos modelos. O módulo Imparcialidade do Curso intensivo de machine learning oferece uma análise detalhada das técnicas de imparcialidade e redução de viés.
A People + AI Research (PAIR) oferece recursos interativos
de IA explicáveis sobre Medição da justiça
e Viés oculto para explicar
esses conceitos.
Para mais termos relacionados à imparcialidade do ML, consulte Glossário de machine learning: imparcialidade | Google para Desenvolvedores.
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-27 UTC.
[null,null,["Última atualização 2025-07-27 UTC."],[[["\u003cp\u003eFairness in machine learning aims to address potential unequal outcomes for users based on sensitive attributes like race, gender, or income due to algorithmic decisions.\u003c/p\u003e\n"],["\u003cp\u003eMachine learning systems can inherit human biases, impacting outcomes for certain groups, and require strategies for identification, measurement, and mitigation.\u003c/p\u003e\n"],["\u003cp\u003eGoogle has worked on improving fairness in products like Google Search and Google Photos by utilizing the Monk Skin Tone Scale to better represent skin tone diversity.\u003c/p\u003e\n"],["\u003cp\u003eDevelopers can learn about fairness and bias mitigation techniques in detail through resources like the Fairness module of Google's Machine Learning Crash Course and interactive AI Explorables from People + AI Research (PAIR).\u003c/p\u003e\n"]]],[],null,["# Fairness\n\n\u003cbr /\u003e\n\n**Fairness** addresses the possible disparate outcomes end users may experience\nrelated to sensitive characteristics such as race, income, sexual orientation,\nor gender through algorithmic decision-making. For example, might a hiring\nalgorithm have biases for or against applicants with names associated with a\nparticular gender or ethnicity?\n\nLearn more about how machine learning systems might be susceptible to human bias\nin this video: \n\n\u003cbr /\u003e\n\nFor a real world example, read about how products such as Google Search and\nGoogle Photos improved diversity of skin tone representation through the\n[Monk Skin Tone Scale](https://blog.google/products/search/monk-skin-tone-scale/).\n\nThere are reliable methods of identifying, measuring, and mitigating bias in models. The [Fairness](/machine-learning/crash-course/fairness)\nmodule of [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\nprovides an in-depth look at fairness and bias mitigation techniques.\n\n[People + AI Research](https://pair.withgoogle.com/) (PAIR) offers interactive\nAI Explorables on [Measuring Fairness](https://pair.withgoogle.com/explorables/measuring-fairness/)\nand [Hidden Bias](https://pair.withgoogle.com/explorables/hidden-bias/) to walk\nthrough these concepts.\nFor more terms related to ML Fairness, see [Machine Learning Glossary:\nFairness \\| Google for Developers](https://developers.google.com/machine-learning/glossary/fairness)."]]