التدريب العملي في مجال تعلّم الآلة: تصنيف الصور
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
التمرين 2: منع التكيّف المفرط
في هذا التمرين، ستُحسِّن نموذج شبكة النقل التسلسلي للصور (CNN) لتصنيف
القطط والكلاب الذي أنشأته في التمرين 1 من خلال تطبيق
تعزيز البيانات وإزالة العناصر العشوائية:
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eThis exercise focuses on enhancing a Convolutional Neural Network (CNN) model for cat-vs-dog image classification, building upon a previous exercise.\u003c/p\u003e\n"],["\u003cp\u003eThe enhancements involve implementing data augmentation techniques and dropout regularization to mitigate overfitting and improve model generalization.\u003c/p\u003e\n"],["\u003cp\u003eYou will actively apply these techniques in a provided coding exercise using Google Colab.\u003c/p\u003e\n"]]],[],null,["# ML Practicum: Image Classification\n\n\u003cbr /\u003e\n\n### Exercise 2: Preventing Overfitting\n\nIn this exercise, you'll improve the CNN model for cat-vs.-dog\nclassification you built in [Exercise 1](/machine-learning/practica/image-classification/exercise-1) by applying\ndata augmentation and dropout regularization: \n[Launch exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/pc/exercises/image_classification_part2.ipynb?utm_source=practicum-IC&utm_campaign=colab-external&utm_medium=referral&hl=en&utm_content=imageexercise2-colab)"]]