एमएल प्रैक्टिकल: इमेज क्लासिफ़िकेशन
संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
दूसरा अभ्यास: ओवरफ़िटिंग को रोकना
इस एक्सरसाइज़ में, पहली एक्सरसाइज़ में बनाए गए, बिल्ली बनाम कुत्ते की पहचान करने वाले सीएनएन मॉडल को बेहतर बनाया जाएगा. इसके लिए, डेटा बढ़ाने और ड्रॉपआउट रेगुलराइज़ेशन का इस्तेमाल किया जाएगा:
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया."],[[["\u003cp\u003eThis exercise focuses on enhancing a Convolutional Neural Network (CNN) model for cat-vs-dog image classification, building upon a previous exercise.\u003c/p\u003e\n"],["\u003cp\u003eThe enhancements involve implementing data augmentation techniques and dropout regularization to mitigate overfitting and improve model generalization.\u003c/p\u003e\n"],["\u003cp\u003eYou will actively apply these techniques in a provided coding exercise using Google Colab.\u003c/p\u003e\n"]]],[],null,["# ML Practicum: Image Classification\n\n\u003cbr /\u003e\n\n### Exercise 2: Preventing Overfitting\n\nIn this exercise, you'll improve the CNN model for cat-vs.-dog\nclassification you built in [Exercise 1](/machine-learning/practica/image-classification/exercise-1) by applying\ndata augmentation and dropout regularization: \n[Launch exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/pc/exercises/image_classification_part2.ipynb?utm_source=practicum-IC&utm_campaign=colab-external&utm_medium=referral&hl=en&utm_content=imageexercise2-colab)"]]