Resumo
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Enquadrar um problema em termos de ML é um processo de duas etapas:
Para verificar se o ML é uma boa abordagem, faça o seguinte:
- Entenda o problema.
- Identifique um caso de uso claro.
- Entenda os dados.
Para enquadrar o problema em termos de ML, faça o seguinte:
- Defina o resultado ideal e a meta do modelo.
- Identifique a saída do modelo.
- Defina métricas de sucesso.
Essas etapas podem economizar tempo e recursos ao definir metas claras e fornecer uma estrutura compartilhada para trabalhar com outros profissionais de ML.
Use os exercícios a seguir para enquadrar um problema de ML e formular uma solução:
IA responsável
Ao implementar soluções de ML, siga sempre os princípios de IA responsável do Google.
Para uma introdução prática sobre como melhorar a equidade e reduzir o viés no ML, consulte o módulo de equidade do MLCC.
Continue aprendendo
Mais recursos de aprendizado de ML
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-08-04 UTC.
[null,null,["Última atualização 2025-08-04 UTC."],[[["\u003cp\u003eFraming a Machine Learning (ML) problem involves understanding the problem, identifying a use case, understanding the data, and then defining the desired outcome, model output, and success metrics.\u003c/p\u003e\n"],["\u003cp\u003eThese steps help in setting clear objectives and establishing a collaborative framework when working with other ML professionals.\u003c/p\u003e\n"],["\u003cp\u003eApplying ML can raise privacy and ethical issues which need careful consideration before deploying a model, using available resources to mitigate these risks.\u003c/p\u003e\n"],["\u003cp\u003eFurther learning resources are available on data preparation, feature engineering, testing, debugging in ML, and responsible AI practices.\u003c/p\u003e\n"]]],[],null,["# Summary\n\n\u003cbr /\u003e\n\nFraming a problem in terms of ML is a two-step process:\n\n1. Verify that ML is a good approach by doing the following:\n\n - Understand the problem.\n - Identify a clear use case.\n - Understand the data.\n2. Frame the problem in ML terms by doing the following:\n\n - Define the ideal outcome and the model's goal.\n - Identify the model's output.\n - Define success metrics.\n\nThese steps can save time and resources by setting clear goals and providing a\nshared framework for working with other ML practitioners.\n\nUse the following exercises to frame an ML problem and formulate a solution:\n\n- [Framing an ML problem](/machine-learning/problem-framing/try-it/framing-exercise)\n- [Formulating a solution](/machine-learning/problem-framing/try-it/formulate-exercise)\n\nResponsible AI\n--------------\n\nWhen implementing ML solutions, always follow\n[Google's Responsible AI Principles](https://ai.google/responsibility/principles).\n\nFor a hands-on introduction for improving fairness and mitigating bias in\nML, see the [MLCC Fairness module](https://developers.google.com/machine-learning/crash-course/fairness).\n\nKeep learning\n-------------\n\n### More ML learning resources\n\n- [Data Preparation and Feature Engineering](/machine-learning/data-prep)\n- [Testing and Debugging in Machine Learning](/machine-learning/testing-debugging)\n- [People + AI Research](https://pair.withgoogle.com/)"]]