Module pywraplp
Expand source code
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 4.0.1
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
from sys import version_info as _swig_python_version_info
if _swig_python_version_info < (2, 7, 0):
    raise RuntimeError("Python 2.7 or later required")
# Import the low-level C/C++ module
if __package__ or "." in __name__:
    from . import _pywraplp
else:
    import _pywraplp
try:
    import builtins as __builtin__
except ImportError:
    import __builtin__
def _swig_repr(self):
    try:
        strthis = "proxy of " + self.this.__repr__()
    except __builtin__.Exception:
        strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
def _swig_setattr_nondynamic_instance_variable(set):
    def set_instance_attr(self, name, value):
        if name == "thisown":
            self.this.own(value)
        elif name == "this":
            set(self, name, value)
        elif hasattr(self, name) and isinstance(getattr(type(self), name), property):
            set(self, name, value)
        else:
            raise AttributeError("You cannot add instance attributes to %s" % self)
    return set_instance_attr
def _swig_setattr_nondynamic_class_variable(set):
    def set_class_attr(cls, name, value):
        if hasattr(cls, name) and not isinstance(getattr(cls, name), property):
            set(cls, name, value)
        else:
            raise AttributeError("You cannot add class attributes to %s" % cls)
    return set_class_attr
def _swig_add_metaclass(metaclass):
    """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
    def wrapper(cls):
        return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
    return wrapper
class _SwigNonDynamicMeta(type):
    """Meta class to enforce nondynamic attributes (no new attributes) for a class"""
    __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)
import numbers
from ortools.linear_solver.linear_solver_natural_api import OFFSET_KEY
from ortools.linear_solver.linear_solver_natural_api import inf
from ortools.linear_solver.linear_solver_natural_api import LinearExpr
from ortools.linear_solver.linear_solver_natural_api import ProductCst
from ortools.linear_solver.linear_solver_natural_api import Sum
from ortools.linear_solver.linear_solver_natural_api import SumArray
from ortools.linear_solver.linear_solver_natural_api import SumCst
from ortools.linear_solver.linear_solver_natural_api import LinearConstraint
from ortools.linear_solver.linear_solver_natural_api import VariableExpr
# Remove the documentation of some functions.
# See https://pdoc3.github.io/pdoc/doc/pdoc/#overriding-docstrings-with-
__pdoc__ = {}
__pdoc__['Solver_infinity'] = False
__pdoc__['Solver_Infinity'] = False
__pdoc__['Solver_SolveWithProto'] = False
__pdoc__['Solver_SupportsProblemType'] = False
__pdoc__['setup_variable_operator'] = False
__pdoc__['Constraint.thisown'] = False
__pdoc__['Constraint.thisown'] = False
__pdoc__['MPSolverParameters.thisown'] = False
__pdoc__['ModelExportOptions.thisown'] = False
__pdoc__['Objective.thisown'] = False
__pdoc__['Solver.thisown'] = False
__pdoc__['Variable.thisown'] = False
class Solver(object):
    r"""
    This mathematical programming (MP) solver class is the main class
    though which users build and solve problems.
    """
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr
    CLP_LINEAR_PROGRAMMING = _pywraplp.Solver_CLP_LINEAR_PROGRAMMING
    r""" Linear Programming solver using Coin CBC."""
    GLOP_LINEAR_PROGRAMMING = _pywraplp.Solver_GLOP_LINEAR_PROGRAMMING
    r""" Linear Programming solver using GLOP (Recommended solver)."""
    CBC_MIXED_INTEGER_PROGRAMMING = _pywraplp.Solver_CBC_MIXED_INTEGER_PROGRAMMING
    r""" Mixed integer Programming Solver using Coin CBC."""
    BOP_INTEGER_PROGRAMMING = _pywraplp.Solver_BOP_INTEGER_PROGRAMMING
    r""" Linear Boolean Programming Solver."""
    SAT_INTEGER_PROGRAMMING = _pywraplp.Solver_SAT_INTEGER_PROGRAMMING
    r""" SAT based solver (requires only integer and Boolean variables). If you pass it mixed integer problems, it will scale coefficients to integer values, and solve continuous variables as integral variables."""
    def __init__(self, name: "std::string const &", problem_type: "operations_research::MPSolver::OptimizationProblemType"):
        r""" Create a solver with the given name and underlying solver backend."""
        _pywraplp.Solver_swiginit(self, _pywraplp.new_Solver(name, problem_type))
    __swig_destroy__ = _pywraplp.delete_Solver
    @staticmethod
    def SupportsProblemType(problem_type: "operations_research::MPSolver::OptimizationProblemType") -> "bool":
        r"""
        Whether the given problem type is supported (this will depend on the
        targets that you linked).
        """
        return _pywraplp.Solver_SupportsProblemType(problem_type)
    def Clear(self) -> "void":
        r"""
        Clears the objective (including the optimization direction), all variables
        and constraints. All the other properties of the MPSolver (like the time
        limit) are kept untouched.
        """
        return _pywraplp.Solver_Clear(self)
    def NumVariables(self) -> "int":
        r""" Returns the number of variables."""
        return _pywraplp.Solver_NumVariables(self)
    def variables(self) -> "std::vector< operations_research::MPVariable * > const &":
        r"""
        Returns the array of variables handled by the MPSolver. (They are listed in
        the order in which they were created.)
        """
        return _pywraplp.Solver_variables(self)
    def LookupVariable(self, var_name: "std::string const &") -> "operations_research::MPVariable *":
        r"""
        Looks up a variable by name, and returns nullptr if it does not exist. The
        first call has a O(n) complexity, as the variable name index is lazily
        created upon first use. Will crash if variable names are not unique.
        """
        return _pywraplp.Solver_LookupVariable(self, var_name)
    def Var(self, lb: "double", ub: "double", integer: "bool", name: "std::string const &") -> "operations_research::MPVariable *":
        r"""
        Creates a variable with the given bounds, integrality requirement and
        name. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver owns
        the variable (i.e. the returned pointer is borrowed). Variable names are
        optional. If you give an empty name, name() will auto-generate one for you
        upon request.
        """
        return _pywraplp.Solver_Var(self, lb, ub, integer, name)
    def NumVar(self, lb: "double", ub: "double", name: "std::string const &") -> "operations_research::MPVariable *":
        r""" Creates a continuous variable."""
        return _pywraplp.Solver_NumVar(self, lb, ub, name)
    def IntVar(self, lb: "double", ub: "double", name: "std::string const &") -> "operations_research::MPVariable *":
        r""" Creates an integer variable."""
        return _pywraplp.Solver_IntVar(self, lb, ub, name)
    def BoolVar(self, name: "std::string const &") -> "operations_research::MPVariable *":
        r""" Creates a boolean variable."""
        return _pywraplp.Solver_BoolVar(self, name)
    def NumConstraints(self) -> "int":
        r""" Returns the number of constraints."""
        return _pywraplp.Solver_NumConstraints(self)
    def constraints(self) -> "std::vector< operations_research::MPConstraint * > const &":
        r"""
        Returns the array of constraints handled by the MPSolver.
        They are listed in the order in which they were created.
        """
        return _pywraplp.Solver_constraints(self)
    def LookupConstraint(self, constraint_name: "std::string const &") -> "operations_research::MPConstraint *":
        r"""
         Looks up a constraint by name, and returns nullptr if it does not exist.
        The first call has a O(n) complexity, as the constraint name index is
        lazily created upon first use. Will crash if constraint names are not
        unique.
        """
        return _pywraplp.Solver_LookupConstraint(self, constraint_name)
    def Constraint(self, *args) -> "operations_research::MPConstraint *":
        r"""
        *Overload 1:*
        Creates a linear constraint with given bounds.
        Bounds can be finite or +/- MPSolver::infinity(). The MPSolver class
        assumes ownership of the constraint.
        :rtype: :py:class:`MPConstraint`
        :return: a pointer to the newly created constraint.
        |
        *Overload 2:*
         Creates a constraint with -infinity and +infinity bounds.
        |
        *Overload 3:*
         Creates a named constraint with given bounds.
        |
        *Overload 4:*
         Creates a named constraint with -infinity and +infinity bounds.
        """
        return _pywraplp.Solver_Constraint(self, *args)
    def Objective(self) -> "operations_research::MPObjective *":
        r""" Returns the mutable objective object."""
        return _pywraplp.Solver_Objective(self)
    OPTIMAL = _pywraplp.Solver_OPTIMAL
    r""" optimal."""
    FEASIBLE = _pywraplp.Solver_FEASIBLE
    r""" feasible, or stopped by limit."""
    INFEASIBLE = _pywraplp.Solver_INFEASIBLE
    r""" proven infeasible."""
    UNBOUNDED = _pywraplp.Solver_UNBOUNDED
    r""" proven unbounded."""
    ABNORMAL = _pywraplp.Solver_ABNORMAL
    r""" abnormal, i.e., error of some kind."""
    NOT_SOLVED = _pywraplp.Solver_NOT_SOLVED
    r""" not been solved yet."""
    def Solve(self, *args) -> "operations_research::MPSolver::ResultStatus":
        r"""
        *Overload 1:*
        Solves the problem using the default parameter values.
        |
        *Overload 2:*
        Solves the problem using the specified parameter values.
        """
        return _pywraplp.Solver_Solve(self, *args)
    def ComputeConstraintActivities(self) -> "std::vector< double >":
        r"""
        Advanced usage: compute the "activities" of all constraints, which are the
        sums of their linear terms. The activities are returned in the same order
        as constraints(), which is the order in which constraints were added; but
        you can also use MPConstraint::index() to get a constraint's index.
        """
        return _pywraplp.Solver_ComputeConstraintActivities(self)
    def VerifySolution(self, tolerance: "double", log_errors: "bool") -> "bool":
        r"""
        Advanced usage: Verifies the *correctness* of the solution.
        It verifies that all variables must be within their domains, all
        constraints must be satisfied, and the reported objective value must be
        accurate.
        Usage:
        - This can only be called after Solve() was called.
        - "tolerance" is interpreted as an absolute error threshold.
        - For the objective value only, if the absolute error is too large,
          the tolerance is interpreted as a relative error threshold instead.
        - If "log_errors" is true, every single violation will be logged.
        - If "tolerance" is negative, it will be set to infinity().
        Most users should just set the --verify_solution flag and not bother using
        this method directly.
        """
        return _pywraplp.Solver_VerifySolution(self, tolerance, log_errors)
    def InterruptSolve(self) -> "bool":
        r"""
         Interrupts the Solve() execution to terminate processing if possible.
        If the underlying interface supports interruption; it does that and returns
        true regardless of whether there's an ongoing Solve() or not. The Solve()
        call may still linger for a while depending on the conditions.  If
        interruption is not supported; returns false and does nothing.
        """
        return _pywraplp.Solver_InterruptSolve(self)
    def FillSolutionResponseProto(self, response: "operations_research::MPSolutionResponse *") -> "void":
        r""" Encodes the current solution in a solution response protocol buffer."""
        return _pywraplp.Solver_FillSolutionResponseProto(self, response)
    @staticmethod
    def SolveWithProto(model_request: "operations_research::MPModelRequest const &", response: "operations_research::MPSolutionResponse *") -> "operations_research::MPSolutionResponse *":
        r"""
        Solves the model encoded by a MPModelRequest protocol buffer and fills the
        solution encoded as a MPSolutionResponse.
        Note(user): This creates a temporary MPSolver and destroys it at the end.
        If you want to keep the MPSolver alive (for debugging, or for incremental
        solving), you should write another version of this function that creates
        the MPSolver object on the heap and returns it.
        """
        return _pywraplp.Solver_SolveWithProto(model_request, response)
    def ExportModelToProto(self, output_model: "operations_research::MPModelProto *") -> "void":
        r""" Exports model to protocol buffer."""
        return _pywraplp.Solver_ExportModelToProto(self, output_model)
    def LoadSolutionFromProto(self, *args) -> "util::Status":
        r"""
        Load a solution encoded in a protocol buffer onto this solver for easy
          access via the MPSolver interface.
        IMPORTANT: This may only be used in conjunction with ExportModel(),
          following this example:
           .. code-block:: c++
                 MPSolver my_solver;
                 ... add variables and constraints ...
                 MPModelProto model_proto;
                 my_solver.ExportModelToProto(model_proto);
                 MPSolutionResponse solver_response;
                 MPSolver::SolveWithProto(model_proto, solver_response);
                 if (solver_response.result_status() == MPSolutionResponse::OPTIMAL) {
                   CHECK_OK(my_solver.LoadSolutionFromProto(solver_response));
                   ... inspect the solution using the usual API: solution_value(), etc...
                 }
        The response must be in OPTIMAL or FEASIBLE status.
        Returns a non-OK status if a problem arised (typically, if it wasn't used
            like it should be):
        - loading a solution whose variables don't correspond to the solver's
          current variables
        - loading a solution with a status other than OPTIMAL / FEASIBLE.
        Note: the objective value isn't checked. You can use VerifySolution() for
              that.
        """
        return _pywraplp.Solver_LoadSolutionFromProto(self, *args)
    def SetSolverSpecificParametersAsString(self, parameters: "std::string const &") -> "bool":
        r"""
        Advanced usage: pass solver specific parameters in text format.
        The format is solver-specific and is the same as the corresponding solver
        configuration file format. Returns true if the operation was successful.
        """
        return _pywraplp.Solver_SetSolverSpecificParametersAsString(self, parameters)
    FREE = _pywraplp.Solver_FREE
    AT_LOWER_BOUND = _pywraplp.Solver_AT_LOWER_BOUND
    AT_UPPER_BOUND = _pywraplp.Solver_AT_UPPER_BOUND
    FIXED_VALUE = _pywraplp.Solver_FIXED_VALUE
    BASIC = _pywraplp.Solver_BASIC
    @staticmethod
    def infinity() -> "double":
        r"""
        Infinity.
        You can use -MPSolver::infinity() for negative infinity.
        """
        return _pywraplp.Solver_infinity()
    def EnableOutput(self) -> "void":
        r""" Enables solver logging."""
        return _pywraplp.Solver_EnableOutput(self)
    def SuppressOutput(self) -> "void":
        r""" Suppresses solver logging."""
        return _pywraplp.Solver_SuppressOutput(self)
    def iterations(self) -> "int64":
        r""" Returns the number of simplex iterations."""
        return _pywraplp.Solver_iterations(self)
    def nodes(self) -> "int64":
        r"""
        Returns the number of branch-and-bound nodes evaluated during the solve.
        Only available for discrete problems.
        """
        return _pywraplp.Solver_nodes(self)
    def ComputeExactConditionNumber(self) -> "double":
        r"""
         Advanced usage: computes the exact condition number of the current scaled
        basis: L1norm(B) * L1norm(inverse(B)), where B is the scaled basis.
        This method requires that a basis exists: it should be called after Solve.
        It is only available for continuous problems. It is implemented for GLPK
        but not CLP because CLP does not provide the API for doing it.
        The condition number measures how well the constraint matrix is conditioned
        and can be used to predict whether numerical issues will arise during the
        solve: the model is declared infeasible whereas it is feasible (or
        vice-versa), the solution obtained is not optimal or violates some
        constraints, the resolution is slow because of repeated singularities.
        The rule of thumb to interpret the condition number kappa is:
          - o kappa <= 1e7: virtually no chance of numerical issues
          - o 1e7 < kappa <= 1e10: small chance of numerical issues
          - o 1e10 < kappa <= 1e13: medium chance of numerical issues
          - o kappa > 1e13: high chance of numerical issues
        The computation of the condition number depends on the quality of the LU
        decomposition, so it is not very accurate when the matrix is ill
        conditioned.
        """
        return _pywraplp.Solver_ComputeExactConditionNumber(self)
    def NextSolution(self) -> "bool":
        r"""
        Some solvers (MIP only, not LP) can produce multiple solutions to the
        problem. Returns true when another solution is available, and updates the
        MPVariable* objects to make the new solution queryable. Call only after
        calling solve.
        The optimality properties of the additional solutions found, and whether or
        not the solver computes them ahead of time or when NextSolution() is called
        is solver specific.
        As of 2020-02-10, only Gurobi and SCIP support NextSolution(), see
        linear_solver_interfaces_test for an example of how to configure these
        solvers for multiple solutions. Other solvers return false unconditionally.
        """
        return _pywraplp.Solver_NextSolution(self)
    def set_time_limit(self, time_limit_milliseconds: "int64") -> "void":
        return _pywraplp.Solver_set_time_limit(self, time_limit_milliseconds)
    def wall_time(self) -> "int64":
        return _pywraplp.Solver_wall_time(self)
    def LoadModelFromProto(self, input_model: "operations_research::MPModelProto const &") -> "std::string":
        return _pywraplp.Solver_LoadModelFromProto(self, input_model)
    def ExportModelAsLpFormat(self, obfuscated: "bool") -> "std::string":
        return _pywraplp.Solver_ExportModelAsLpFormat(self, obfuscated)
    def ExportModelAsMpsFormat(self, fixed_format: "bool", obfuscated: "bool") -> "std::string":
        return _pywraplp.Solver_ExportModelAsMpsFormat(self, fixed_format, obfuscated)
    def SetHint(self, variables: "std::vector< operations_research::MPVariable * > const &", values: "std::vector< double > const &") -> "void":
        r""" Set a hint for solution. If a feasible or almost-feasible solution to the problem is already known, it may be helpful to pass it to the solver so that it can be used. A solver that supports this feature will try to use this information to create its initial feasible solution. Note that it may not always be faster to give a hint like this to the solver. There is also no guarantee that the solver will use this hint or try to return a solution "close" to this assignment in case of multiple optimal solutions."""
        return _pywraplp.Solver_SetHint(self, variables, values)
    def SetNumThreads(self, num_theads: "int") -> "bool":
        r""" Sets the number of threads to be used by the solver."""
        return _pywraplp.Solver_SetNumThreads(self, num_theads)
    def Add(self, constraint, name=''):
      if isinstance(constraint, bool):
        if constraint:
          return self.RowConstraint(0, 0, name)
        else:
          return self.RowConstraint(1, 1, name)
      else:
        return constraint.Extract(self, name)
    def Sum(self, expr_array):
      result = SumArray(expr_array)
      return result
    def RowConstraint(self, *args):
      return self.Constraint(*args)
    def Minimize(self, expr):
      objective = self.Objective()
      objective.Clear()
      objective.SetMinimization()
      if isinstance(expr, numbers.Number):
          objective.SetOffset(expr)
      else:
          coeffs = expr.GetCoeffs()
          objective.SetOffset(coeffs.pop(OFFSET_KEY, 0.0))
          for v, c, in list(coeffs.items()):
            objective.SetCoefficient(v, float(c))
    def Maximize(self, expr):
      objective = self.Objective()
      objective.Clear()
      objective.SetMaximization()
      if isinstance(expr, numbers.Number):
          objective.SetOffset(expr)
      else:
          coeffs = expr.GetCoeffs()
          objective.SetOffset(coeffs.pop(OFFSET_KEY, 0.0))
          for v, c, in list(coeffs.items()):
            objective.SetCoefficient(v, float(c))
    @staticmethod
    def Infinity() -> "double":
        return _pywraplp.Solver_Infinity()
    def SetTimeLimit(self, x: "int64") -> "void":
        return _pywraplp.Solver_SetTimeLimit(self, x)
    def WallTime(self) -> "int64":
        return _pywraplp.Solver_WallTime(self)
    def Iterations(self) -> "int64":
        return _pywraplp.Solver_Iterations(self)
# Register Solver in _pywraplp:
_pywraplp.Solver_swigregister(Solver)
def Solver_SupportsProblemType(problem_type: "operations_research::MPSolver::OptimizationProblemType") -> "bool":
    r"""
    Whether the given problem type is supported (this will depend on the
    targets that you linked).
    """
    return _pywraplp.Solver_SupportsProblemType(problem_type)
def Solver_SolveWithProto(model_request: "operations_research::MPModelRequest const &", response: "operations_research::MPSolutionResponse *") -> "operations_research::MPSolutionResponse *":
    r"""
    Solves the model encoded by a MPModelRequest protocol buffer and fills the
    solution encoded as a MPSolutionResponse.
    Note(user): This creates a temporary MPSolver and destroys it at the end.
    If you want to keep the MPSolver alive (for debugging, or for incremental
    solving), you should write another version of this function that creates
    the MPSolver object on the heap and returns it.
    """
    return _pywraplp.Solver_SolveWithProto(model_request, response)
def Solver_infinity() -> "double":
    r"""
    Infinity.
    You can use -MPSolver::infinity() for negative infinity.
    """
    return _pywraplp.Solver_infinity()
def Solver_Infinity() -> "double":
    return _pywraplp.Solver_Infinity()
def __lshift__(*args) -> "std::ostream &":
    return _pywraplp.__lshift__(*args)
class Objective(object):
    r""" A class to express a linear objective."""
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    def __init__(self, *args, **kwargs):
        raise AttributeError("No constructor defined")
    __repr__ = _swig_repr
    def Clear(self) -> "void":
        r"""
         Clears the offset, all variables and coefficients, and the optimization
        direction.
        """
        return _pywraplp.Objective_Clear(self)
    def SetCoefficient(self, var: "Variable", coeff: "double") -> "void":
        r"""
        Sets the coefficient of the variable in the objective.
        If the variable does not belong to the solver, the function just returns,
        or crashes in non-opt mode.
        """
        return _pywraplp.Objective_SetCoefficient(self, var, coeff)
    def GetCoefficient(self, var: "Variable") -> "double":
        r"""
         Gets the coefficient of a given variable in the objective
        It returns 0 if the variable does not appear in the objective).
        """
        return _pywraplp.Objective_GetCoefficient(self, var)
    def SetOffset(self, value: "double") -> "void":
        r""" Sets the constant term in the objective."""
        return _pywraplp.Objective_SetOffset(self, value)
    def offset(self) -> "double":
        r""" Gets the constant term in the objective."""
        return _pywraplp.Objective_offset(self)
    def SetOptimizationDirection(self, maximize: "bool") -> "void":
        r""" Sets the optimization direction (maximize: true or minimize: false)."""
        return _pywraplp.Objective_SetOptimizationDirection(self, maximize)
    def SetMinimization(self) -> "void":
        r""" Sets the optimization direction to minimize."""
        return _pywraplp.Objective_SetMinimization(self)
    def SetMaximization(self) -> "void":
        r""" Sets the optimization direction to maximize."""
        return _pywraplp.Objective_SetMaximization(self)
    def maximization(self) -> "bool":
        r""" Is the optimization direction set to maximize?"""
        return _pywraplp.Objective_maximization(self)
    def minimization(self) -> "bool":
        r""" Is the optimization direction set to minimize?"""
        return _pywraplp.Objective_minimization(self)
    def Value(self) -> "double":
        r"""
        Returns the objective value of the best solution found so far.
        It is the optimal objective value if the problem has been solved to
        optimality.
        Note: the objective value may be slightly different than what you could
        compute yourself using ``MPVariable::solution_value();`` please use the
        --verify_solution flag to gain confidence about the numerical stability of
        your solution.
        """
        return _pywraplp.Objective_Value(self)
    def BestBound(self) -> "double":
        r"""
        Returns the best objective bound.
        In case of minimization, it is a lower bound on the objective value of the
        optimal integer solution. Only available for discrete problems.
        """
        return _pywraplp.Objective_BestBound(self)
    def Offset(self) -> "double":
        return _pywraplp.Objective_Offset(self)
    __swig_destroy__ = _pywraplp.delete_Objective
# Register Objective in _pywraplp:
_pywraplp.Objective_swigregister(Objective)
class Variable(object):
    r""" The class for variables of a Mathematical Programming (MP) model."""
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    def __init__(self, *args, **kwargs):
        raise AttributeError("No constructor defined")
    def name(self) -> "std::string const &":
        r""" Returns the name of the variable."""
        return _pywraplp.Variable_name(self)
    def SetInteger(self, integer: "bool") -> "void":
        r""" Sets the integrality requirement of the variable."""
        return _pywraplp.Variable_SetInteger(self, integer)
    def integer(self) -> "bool":
        r""" Returns the integrality requirement of the variable."""
        return _pywraplp.Variable_integer(self)
    def solution_value(self) -> "double":
        r"""
        Returns the value of the variable in the current solution.
        If the variable is integer, then the value will always be an integer (the
        underlying solver handles floating-point values only, but this function
        automatically rounds it to the nearest integer; see: man 3 round).
        """
        return _pywraplp.Variable_solution_value(self)
    def index(self) -> "int":
        r""" Returns the index of the variable in the MPSolver::variables_."""
        return _pywraplp.Variable_index(self)
    def lb(self) -> "double":
        r""" Returns the lower bound."""
        return _pywraplp.Variable_lb(self)
    def ub(self) -> "double":
        r""" Returns the upper bound."""
        return _pywraplp.Variable_ub(self)
    def SetBounds(self, lb: "double", ub: "double") -> "void":
        r""" Sets both the lower and upper bounds."""
        return _pywraplp.Variable_SetBounds(self, lb, ub)
    def reduced_cost(self) -> "double":
        r"""
        Advanced usage: returns the reduced cost of the variable in the current
        solution (only available for continuous problems).
        """
        return _pywraplp.Variable_reduced_cost(self)
    def basis_status(self) -> "operations_research::MPSolver::BasisStatus":
        r"""
        Advanced usage: returns the basis status of the variable in the current
        solution (only available for continuous problems).
        See also: MPSolver::BasisStatus.
        """
        return _pywraplp.Variable_basis_status(self)
    def __str__(self) -> "std::string":
        return _pywraplp.Variable___str__(self)
    def __repr__(self) -> "std::string":
        return _pywraplp.Variable___repr__(self)
    def __getattr__(self, name):
      return getattr(VariableExpr(self), name)
    def SolutionValue(self) -> "double":
        return _pywraplp.Variable_SolutionValue(self)
    def Integer(self) -> "bool":
        return _pywraplp.Variable_Integer(self)
    def Lb(self) -> "double":
        return _pywraplp.Variable_Lb(self)
    def Ub(self) -> "double":
        return _pywraplp.Variable_Ub(self)
    def SetLb(self, x: "double") -> "void":
        return _pywraplp.Variable_SetLb(self, x)
    def SetUb(self, x: "double") -> "void":
        return _pywraplp.Variable_SetUb(self, x)
    def ReducedCost(self) -> "double":
        return _pywraplp.Variable_ReducedCost(self)
    __swig_destroy__ = _pywraplp.delete_Variable
# Register Variable in _pywraplp:
_pywraplp.Variable_swigregister(Variable)
class Constraint(object):
    r"""
    The class for constraints of a Mathematical Programming (MP) model.
    A constraint is represented as a linear equation or inequality.
    """
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    def __init__(self, *args, **kwargs):
        raise AttributeError("No constructor defined")
    __repr__ = _swig_repr
    def name(self) -> "std::string const &":
        r""" Returns the name of the constraint."""
        return _pywraplp.Constraint_name(self)
    def Clear(self) -> "void":
        r""" Clears all variables and coefficients. Does not clear the bounds."""
        return _pywraplp.Constraint_Clear(self)
    def SetCoefficient(self, var: "Variable", coeff: "double") -> "void":
        r"""
        Sets the coefficient of the variable on the constraint.
        If the variable does not belong to the solver, the function just returns,
        or crashes in non-opt mode.
        """
        return _pywraplp.Constraint_SetCoefficient(self, var, coeff)
    def GetCoefficient(self, var: "Variable") -> "double":
        r"""
        Gets the coefficient of a given variable on the constraint (which is 0 if
        the variable does not appear in the constraint).
        """
        return _pywraplp.Constraint_GetCoefficient(self, var)
    def lb(self) -> "double":
        r""" Returns the lower bound."""
        return _pywraplp.Constraint_lb(self)
    def ub(self) -> "double":
        r""" Returns the upper bound."""
        return _pywraplp.Constraint_ub(self)
    def SetBounds(self, lb: "double", ub: "double") -> "void":
        r""" Sets both the lower and upper bounds."""
        return _pywraplp.Constraint_SetBounds(self, lb, ub)
    def set_is_lazy(self, laziness: "bool") -> "void":
        r"""
        Advanced usage: sets the constraint "laziness".
        **This is only supported for SCIP and has no effect on other
        solvers.**
        When **laziness** is true, the constraint is only considered by the Linear
        Programming solver if its current solution violates the constraint. In this
        case, the constraint is definitively added to the problem. This may be
        useful in some MIP problems, and may have a dramatic impact on performance.
        For more info see: http://tinyurl.com/lazy-constraints.
        """
        return _pywraplp.Constraint_set_is_lazy(self, laziness)
    def index(self) -> "int":
        r""" Returns the index of the constraint in the MPSolver::constraints_."""
        return _pywraplp.Constraint_index(self)
    def dual_value(self) -> "double":
        r"""
        Advanced usage: returns the dual value of the constraint in the current
        solution (only available for continuous problems).
        """
        return _pywraplp.Constraint_dual_value(self)
    def basis_status(self) -> "operations_research::MPSolver::BasisStatus":
        r"""
        Advanced usage: returns the basis status of the constraint.
        It is only available for continuous problems).
        Note that if a constraint "linear_expression in [lb, ub]" is transformed
        into "linear_expression + slack = 0" with slack in [-ub, -lb], then this
        status is the same as the status of the slack variable with AT_UPPER_BOUND
        and AT_LOWER_BOUND swapped.
        See also: MPSolver::BasisStatus.
        """
        return _pywraplp.Constraint_basis_status(self)
    def Lb(self) -> "double":
        return _pywraplp.Constraint_Lb(self)
    def Ub(self) -> "double":
        return _pywraplp.Constraint_Ub(self)
    def SetLb(self, x: "double") -> "void":
        return _pywraplp.Constraint_SetLb(self, x)
    def SetUb(self, x: "double") -> "void":
        return _pywraplp.Constraint_SetUb(self, x)
    def DualValue(self) -> "double":
        return _pywraplp.Constraint_DualValue(self)
    __swig_destroy__ = _pywraplp.delete_Constraint
# Register Constraint in _pywraplp:
_pywraplp.Constraint_swigregister(Constraint)
class MPSolverParameters(object):
    r"""
    This class stores parameter settings for LP and MIP solvers. Some parameters
    are marked as advanced: do not change their values unless you know what you
    are doing!
    For developers: how to add a new parameter:
    - Add the new Foo parameter in the DoubleParam or IntegerParam enum.
    - If it is a categorical param, add a FooValues enum.
    - Decide if the wrapper should define a default value for it: yes
      if it controls the properties of the solution (example:
      tolerances) or if it consistently improves performance, no
      otherwise. If yes, define kDefaultFoo.
    - Add a foo_value_ member and, if no default value is defined, a
      foo_is_default_ member.
    - Add code to handle Foo in Set...Param, Reset...Param,
      Get...Param, Reset and the constructor.
    - In class MPSolverInterface, add a virtual method SetFoo, add it
      to SetCommonParameters or SetMIPParameters, and implement it for
      each solver. Sometimes, parameters need to be implemented
      differently, see for example the INCREMENTALITY implementation.
    - Add a test in linear_solver_test.cc.
    TODO(user): store the parameter values in a protocol buffer
    instead. We need to figure out how to deal with the subtleties of
    the default values.
    """
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr
    RELATIVE_MIP_GAP = _pywraplp.MPSolverParameters_RELATIVE_MIP_GAP
    r""" Limit for relative MIP gap."""
    PRIMAL_TOLERANCE = _pywraplp.MPSolverParameters_PRIMAL_TOLERANCE
    r"""
    Advanced usage: tolerance for primal feasibility of basic solutions.
    This does not control the integer feasibility tolerance of integer
    solutions for MIP or the tolerance used during presolve.
    """
    DUAL_TOLERANCE = _pywraplp.MPSolverParameters_DUAL_TOLERANCE
    r""" Advanced usage: tolerance for dual feasibility of basic solutions."""
    PRESOLVE = _pywraplp.MPSolverParameters_PRESOLVE
    r""" Advanced usage: presolve mode."""
    LP_ALGORITHM = _pywraplp.MPSolverParameters_LP_ALGORITHM
    r""" Algorithm to solve linear programs."""
    INCREMENTALITY = _pywraplp.MPSolverParameters_INCREMENTALITY
    r""" Advanced usage: incrementality from one solve to the next."""
    SCALING = _pywraplp.MPSolverParameters_SCALING
    r""" Advanced usage: enable or disable matrix scaling."""
    PRESOLVE_OFF = _pywraplp.MPSolverParameters_PRESOLVE_OFF
    r""" Presolve is off."""
    PRESOLVE_ON = _pywraplp.MPSolverParameters_PRESOLVE_ON
    r""" Presolve is on."""
    DUAL = _pywraplp.MPSolverParameters_DUAL
    r""" Dual simplex."""
    PRIMAL = _pywraplp.MPSolverParameters_PRIMAL
    r""" Primal simplex."""
    BARRIER = _pywraplp.MPSolverParameters_BARRIER
    r""" Barrier algorithm."""
    INCREMENTALITY_OFF = _pywraplp.MPSolverParameters_INCREMENTALITY_OFF
    r""" Start solve from scratch."""
    INCREMENTALITY_ON = _pywraplp.MPSolverParameters_INCREMENTALITY_ON
    r"""
    Reuse results from previous solve as much as the underlying solver
    allows.
    """
    SCALING_OFF = _pywraplp.MPSolverParameters_SCALING_OFF
    r""" Scaling is off."""
    SCALING_ON = _pywraplp.MPSolverParameters_SCALING_ON
    r""" Scaling is on."""
    def __init__(self):
        r""" The constructor sets all parameters to their default value."""
        _pywraplp.MPSolverParameters_swiginit(self, _pywraplp.new_MPSolverParameters())
    def SetDoubleParam(self, param: "operations_research::MPSolverParameters::DoubleParam", value: "double") -> "void":
        r""" Sets a double parameter to a specific value."""
        return _pywraplp.MPSolverParameters_SetDoubleParam(self, param, value)
    def SetIntegerParam(self, param: "operations_research::MPSolverParameters::IntegerParam", value: "int") -> "void":
        r""" Sets a integer parameter to a specific value."""
        return _pywraplp.MPSolverParameters_SetIntegerParam(self, param, value)
    def GetDoubleParam(self, param: "operations_research::MPSolverParameters::DoubleParam") -> "double":
        r""" Returns the value of a double parameter."""
        return _pywraplp.MPSolverParameters_GetDoubleParam(self, param)
    def GetIntegerParam(self, param: "operations_research::MPSolverParameters::IntegerParam") -> "int":
        r""" Returns the value of an integer parameter."""
        return _pywraplp.MPSolverParameters_GetIntegerParam(self, param)
    __swig_destroy__ = _pywraplp.delete_MPSolverParameters
# Register MPSolverParameters in _pywraplp:
_pywraplp.MPSolverParameters_swigregister(MPSolverParameters)
cvar = _pywraplp.cvar
MPSolverParameters.kDefaultRelativeMipGap = _pywraplp.cvar.MPSolverParameters_kDefaultRelativeMipGap
MPSolverParameters.kDefaultPrimalTolerance = _pywraplp.cvar.MPSolverParameters_kDefaultPrimalTolerance
MPSolverParameters.kDefaultDualTolerance = _pywraplp.cvar.MPSolverParameters_kDefaultDualTolerance
MPSolverParameters.kDefaultPresolve = _pywraplp.cvar.MPSolverParameters_kDefaultPresolve
MPSolverParameters.kDefaultIncrementality = _pywraplp.cvar.MPSolverParameters_kDefaultIncrementality
class ModelExportOptions(object):
    r""" Export options."""
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr
    def __init__(self):
        _pywraplp.ModelExportOptions_swiginit(self, _pywraplp.new_ModelExportOptions())
    __swig_destroy__ = _pywraplp.delete_ModelExportOptions
# Register ModelExportOptions in _pywraplp:
_pywraplp.ModelExportOptions_swigregister(ModelExportOptions)
def ExportModelAsLpFormat(*args) -> "std::string":
    return _pywraplp.ExportModelAsLpFormat(*args)
def ExportModelAsMpsFormat(*args) -> "std::string":
    return _pywraplp.ExportModelAsMpsFormat(*args)
def FindErrorInModelProto(input_model: "operations_research::MPModelProto const &") -> "std::string":
    return _pywraplp.FindErrorInModelProto(input_model)
def setup_variable_operator(opname):
  setattr(Variable, opname,
          lambda self, *args: getattr(VariableExpr(self), opname)(*args))
for opname in LinearExpr.OVERRIDDEN_OPERATOR_METHODS:
  setup_variable_operator(opname)- def ExportModelAsLpFormat(*args) -> 'std::string'
- 
Expand source codedef ExportModelAsLpFormat(*args) -> "std::string": return _pywraplp.ExportModelAsLpFormat(*args)
- def ExportModelAsMpsFormat(*args) -> 'std::string'
- 
Expand source codedef ExportModelAsMpsFormat(*args) -> "std::string": return _pywraplp.ExportModelAsMpsFormat(*args)
- def FindErrorInModelProto(input_model: operations_research::MPModelProto const &) -> 'std::string'
- 
Expand source codedef FindErrorInModelProto(input_model: "operations_research::MPModelProto const &") -> "std::string": return _pywraplp.FindErrorInModelProto(input_model)
ExportModelAsLpFormat
ExportModelAsMpsFormat
FindErrorInModelProto
- class Constraint (*args, **kwargs)
- 
The class for constraints of a Mathematical Programming (MP) model. A constraint is represented as a linear equation or inequality. Expand source codeclass Constraint(object): r""" The class for constraints of a Mathematical Programming (MP) model. A constraint is represented as a linear equation or inequality. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def name(self) -> "std::string const &": r""" Returns the name of the constraint.""" return _pywraplp.Constraint_name(self) def Clear(self) -> "void": r""" Clears all variables and coefficients. Does not clear the bounds.""" return _pywraplp.Constraint_Clear(self) def SetCoefficient(self, var: "Variable", coeff: "double") -> "void": r""" Sets the coefficient of the variable on the constraint. If the variable does not belong to the solver, the function just returns, or crashes in non-opt mode. """ return _pywraplp.Constraint_SetCoefficient(self, var, coeff) def GetCoefficient(self, var: "Variable") -> "double": r""" Gets the coefficient of a given variable on the constraint (which is 0 if the variable does not appear in the constraint). """ return _pywraplp.Constraint_GetCoefficient(self, var) def lb(self) -> "double": r""" Returns the lower bound.""" return _pywraplp.Constraint_lb(self) def ub(self) -> "double": r""" Returns the upper bound.""" return _pywraplp.Constraint_ub(self) def SetBounds(self, lb: "double", ub: "double") -> "void": r""" Sets both the lower and upper bounds.""" return _pywraplp.Constraint_SetBounds(self, lb, ub) def set_is_lazy(self, laziness: "bool") -> "void": r""" Advanced usage: sets the constraint "laziness". **This is only supported for SCIP and has no effect on other solvers.** When **laziness** is true, the constraint is only considered by the Linear Programming solver if its current solution violates the constraint. In this case, the constraint is definitively added to the problem. This may be useful in some MIP problems, and may have a dramatic impact on performance. For more info see: http://tinyurl.com/lazy-constraints. """ return _pywraplp.Constraint_set_is_lazy(self, laziness) def index(self) -> "int": r""" Returns the index of the constraint in the MPSolver::constraints_.""" return _pywraplp.Constraint_index(self) def dual_value(self) -> "double": r""" Advanced usage: returns the dual value of the constraint in the current solution (only available for continuous problems). """ return _pywraplp.Constraint_dual_value(self) def basis_status(self) -> "operations_research::MPSolver::BasisStatus": r""" Advanced usage: returns the basis status of the constraint. It is only available for continuous problems). Note that if a constraint "linear_expression in [lb, ub]" is transformed into "linear_expression + slack = 0" with slack in [-ub, -lb], then this status is the same as the status of the slack variable with AT_UPPER_BOUND and AT_LOWER_BOUND swapped. See also: MPSolver::BasisStatus. """ return _pywraplp.Constraint_basis_status(self) def Lb(self) -> "double": return _pywraplp.Constraint_Lb(self) def Ub(self) -> "double": return _pywraplp.Constraint_Ub(self) def SetLb(self, x: "double") -> "void": return _pywraplp.Constraint_SetLb(self, x) def SetUb(self, x: "double") -> "void": return _pywraplp.Constraint_SetUb(self, x) def DualValue(self) -> "double": return _pywraplp.Constraint_DualValue(self) __swig_destroy__ = _pywraplp.delete_ConstraintMethods- def Clear(self) -> 'void'
- 
Clears all variables and coefficients. Does not clear the bounds. Expand source codedef Clear(self) -> "void": r""" Clears all variables and coefficients. Does not clear the bounds.""" return _pywraplp.Constraint_Clear(self)
- def DualValue(self) -> 'double'
- 
Expand source codedef DualValue(self) -> "double": return _pywraplp.Constraint_DualValue(self)
- def GetCoefficient(self, var: Variable) -> 'double'
- 
Gets the coefficient of a given variable on the constraint (which is 0 if the variable does not appear in the constraint). Expand source codedef GetCoefficient(self, var: "Variable") -> "double": r""" Gets the coefficient of a given variable on the constraint (which is 0 if the variable does not appear in the constraint). """ return _pywraplp.Constraint_GetCoefficient(self, var)
- def Lb(self) -> 'double'
- 
Expand source codedef Lb(self) -> "double": return _pywraplp.Constraint_Lb(self)
- def SetBounds(self, lb: double, ub: double) -> 'void'
- 
Sets both the lower and upper bounds. Expand source codedef SetBounds(self, lb: "double", ub: "double") -> "void": r""" Sets both the lower and upper bounds.""" return _pywraplp.Constraint_SetBounds(self, lb, ub)
- def SetCoefficient(self, var: Variable, coeff: double) -> 'void'
- 
Sets the coefficient of the variable on the constraint. If the variable does not belong to the solver, the function just returns, or crashes in non-opt mode. Expand source codedef SetCoefficient(self, var: "Variable", coeff: "double") -> "void": r""" Sets the coefficient of the variable on the constraint. If the variable does not belong to the solver, the function just returns, or crashes in non-opt mode. """ return _pywraplp.Constraint_SetCoefficient(self, var, coeff)
- def SetLb(self, x: double) -> 'void'
- 
Expand source codedef SetLb(self, x: "double") -> "void": return _pywraplp.Constraint_SetLb(self, x)
- def SetUb(self, x: double) -> 'void'
- 
Expand source codedef SetUb(self, x: "double") -> "void": return _pywraplp.Constraint_SetUb(self, x)
- def Ub(self) -> 'double'
- 
Expand source codedef Ub(self) -> "double": return _pywraplp.Constraint_Ub(self)
- def basis_status(self) -> 'operations_research::MPSolver::BasisStatus'
- 
Advanced usage: returns the basis status of the constraint. It is only available for continuous problems). Note that if a constraint "linear_expression in [lb, ub]" is transformed into "linear_expression + slack = 0" with slack in [-ub, -lb], then this status is the same as the status of the slack variable with AT_UPPER_BOUND and AT_LOWER_BOUND swapped. See also: MPSolver::BasisStatus. Expand source codedef basis_status(self) -> "operations_research::MPSolver::BasisStatus": r""" Advanced usage: returns the basis status of the constraint. It is only available for continuous problems). Note that if a constraint "linear_expression in [lb, ub]" is transformed into "linear_expression + slack = 0" with slack in [-ub, -lb], then this status is the same as the status of the slack variable with AT_UPPER_BOUND and AT_LOWER_BOUND swapped. See also: MPSolver::BasisStatus. """ return _pywraplp.Constraint_basis_status(self)
- def dual_value(self) -> 'double'
- 
Advanced usage: returns the dual value of the constraint in the current solution (only available for continuous problems). Expand source codedef dual_value(self) -> "double": r""" Advanced usage: returns the dual value of the constraint in the current solution (only available for continuous problems). """ return _pywraplp.Constraint_dual_value(self)
- def index(self) -> int
- 
Returns the index of the constraint in the MPSolver::constraints_. Expand source codedef index(self) -> "int": r""" Returns the index of the constraint in the MPSolver::constraints_.""" return _pywraplp.Constraint_index(self)
- def lb(self) -> 'double'
- 
Returns the lower bound. Expand source codedef lb(self) -> "double": r""" Returns the lower bound.""" return _pywraplp.Constraint_lb(self)
- def name(self) -> 'std::string const &'
- 
Returns the name of the constraint. Expand source codedef name(self) -> "std::string const &": r""" Returns the name of the constraint.""" return _pywraplp.Constraint_name(self)
- def set_is_lazy(self, laziness: bool) -> 'void'
- 
Advanced usage: sets the constraint "laziness". This is only supported for SCIP and has no effect on other solvers. When laziness is true, the constraint is only considered by the Linear Programming solver if its current solution violates the constraint. In this case, the constraint is definitively added to the problem. This may be useful in some MIP problems, and may have a dramatic impact on performance. For more info see: http://tinyurl.com/lazy-constraints. Expand source codedef set_is_lazy(self, laziness: "bool") -> "void": r""" Advanced usage: sets the constraint "laziness". **This is only supported for SCIP and has no effect on other solvers.** When **laziness** is true, the constraint is only considered by the Linear Programming solver if its current solution violates the constraint. In this case, the constraint is definitively added to the problem. This may be useful in some MIP problems, and may have a dramatic impact on performance. For more info see: http://tinyurl.com/lazy-constraints. """ return _pywraplp.Constraint_set_is_lazy(self, laziness)
- def ub(self) -> 'double'
- 
Returns the upper bound. Expand source codedef ub(self) -> "double": r""" Returns the upper bound.""" return _pywraplp.Constraint_ub(self)
 ClearDualValueGetCoefficientLbSetBoundsSetCoefficientSetLbSetUbUbbasis_statusdual_valueindexlbnameset_is_lazyub
- class MPSolverParameters
- 
This class stores parameter settings for LP and MIP solvers. Some parameters are marked as advanced: do not change their values unless you know what you are doing! For developers: how to add a new parameter: - Add the new Foo parameter in the DoubleParam or IntegerParam enum. - If it is a categorical param, add a FooValues enum. - Decide if the wrapper should define a default value for it: yes if it controls the properties of the solution (example: tolerances) or if it consistently improves performance, no otherwise. If yes, define kDefaultFoo. - Add a foo_value_ member and, if no default value is defined, a foo_is_default_ member. - Add code to handle Foo in Set…Param, Reset…Param, Get…Param, Reset and the constructor. - In class MPSolverInterface, add a virtual method SetFoo, add it to SetCommonParameters or SetMIPParameters, and implement it for each solver. Sometimes, parameters need to be implemented differently, see for example the INCREMENTALITY implementation. - Add a test in linear_solver_test.cc. TODO(user): store the parameter values in a protocol buffer instead. We need to figure out how to deal with the subtleties of the default values. The constructor sets all parameters to their default value. Expand source codeclass MPSolverParameters(object): r""" This class stores parameter settings for LP and MIP solvers. Some parameters are marked as advanced: do not change their values unless you know what you are doing! For developers: how to add a new parameter: - Add the new Foo parameter in the DoubleParam or IntegerParam enum. - If it is a categorical param, add a FooValues enum. - Decide if the wrapper should define a default value for it: yes if it controls the properties of the solution (example: tolerances) or if it consistently improves performance, no otherwise. If yes, define kDefaultFoo. - Add a foo_value_ member and, if no default value is defined, a foo_is_default_ member. - Add code to handle Foo in Set...Param, Reset...Param, Get...Param, Reset and the constructor. - In class MPSolverInterface, add a virtual method SetFoo, add it to SetCommonParameters or SetMIPParameters, and implement it for each solver. Sometimes, parameters need to be implemented differently, see for example the INCREMENTALITY implementation. - Add a test in linear_solver_test.cc. TODO(user): store the parameter values in a protocol buffer instead. We need to figure out how to deal with the subtleties of the default values. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr RELATIVE_MIP_GAP = _pywraplp.MPSolverParameters_RELATIVE_MIP_GAP r""" Limit for relative MIP gap.""" PRIMAL_TOLERANCE = _pywraplp.MPSolverParameters_PRIMAL_TOLERANCE r""" Advanced usage: tolerance for primal feasibility of basic solutions. This does not control the integer feasibility tolerance of integer solutions for MIP or the tolerance used during presolve. """ DUAL_TOLERANCE = _pywraplp.MPSolverParameters_DUAL_TOLERANCE r""" Advanced usage: tolerance for dual feasibility of basic solutions.""" PRESOLVE = _pywraplp.MPSolverParameters_PRESOLVE r""" Advanced usage: presolve mode.""" LP_ALGORITHM = _pywraplp.MPSolverParameters_LP_ALGORITHM r""" Algorithm to solve linear programs.""" INCREMENTALITY = _pywraplp.MPSolverParameters_INCREMENTALITY r""" Advanced usage: incrementality from one solve to the next.""" SCALING = _pywraplp.MPSolverParameters_SCALING r""" Advanced usage: enable or disable matrix scaling.""" PRESOLVE_OFF = _pywraplp.MPSolverParameters_PRESOLVE_OFF r""" Presolve is off.""" PRESOLVE_ON = _pywraplp.MPSolverParameters_PRESOLVE_ON r""" Presolve is on.""" DUAL = _pywraplp.MPSolverParameters_DUAL r""" Dual simplex.""" PRIMAL = _pywraplp.MPSolverParameters_PRIMAL r""" Primal simplex.""" BARRIER = _pywraplp.MPSolverParameters_BARRIER r""" Barrier algorithm.""" INCREMENTALITY_OFF = _pywraplp.MPSolverParameters_INCREMENTALITY_OFF r""" Start solve from scratch.""" INCREMENTALITY_ON = _pywraplp.MPSolverParameters_INCREMENTALITY_ON r""" Reuse results from previous solve as much as the underlying solver allows. """ SCALING_OFF = _pywraplp.MPSolverParameters_SCALING_OFF r""" Scaling is off.""" SCALING_ON = _pywraplp.MPSolverParameters_SCALING_ON r""" Scaling is on.""" def __init__(self): r""" The constructor sets all parameters to their default value.""" _pywraplp.MPSolverParameters_swiginit(self, _pywraplp.new_MPSolverParameters()) def SetDoubleParam(self, param: "operations_research::MPSolverParameters::DoubleParam", value: "double") -> "void": r""" Sets a double parameter to a specific value.""" return _pywraplp.MPSolverParameters_SetDoubleParam(self, param, value) def SetIntegerParam(self, param: "operations_research::MPSolverParameters::IntegerParam", value: "int") -> "void": r""" Sets a integer parameter to a specific value.""" return _pywraplp.MPSolverParameters_SetIntegerParam(self, param, value) def GetDoubleParam(self, param: "operations_research::MPSolverParameters::DoubleParam") -> "double": r""" Returns the value of a double parameter.""" return _pywraplp.MPSolverParameters_GetDoubleParam(self, param) def GetIntegerParam(self, param: "operations_research::MPSolverParameters::IntegerParam") -> "int": r""" Returns the value of an integer parameter.""" return _pywraplp.MPSolverParameters_GetIntegerParam(self, param) __swig_destroy__ = _pywraplp.delete_MPSolverParametersClass variables- var BARRIER
- 
Barrier algorithm. 
- var DUAL
- 
Dual simplex. 
- var DUAL_TOLERANCE
- 
Advanced usage: tolerance for dual feasibility of basic solutions. 
- var INCREMENTALITY
- 
Advanced usage: incrementality from one solve to the next. 
- var INCREMENTALITY_OFF
- 
Start solve from scratch. 
- var INCREMENTALITY_ON
- 
Reuse results from previous solve as much as the underlying solver allows. 
- var LP_ALGORITHM
- 
Algorithm to solve linear programs. 
- var PRESOLVE
- 
Advanced usage: presolve mode. 
- var PRESOLVE_OFF
- 
Presolve is off. 
- var PRESOLVE_ON
- 
Presolve is on. 
- var PRIMAL
- 
Primal simplex. 
- var PRIMAL_TOLERANCE
- 
Advanced usage: tolerance for primal feasibility of basic solutions. This does not control the integer feasibility tolerance of integer solutions for MIP or the tolerance used during presolve. 
- var RELATIVE_MIP_GAP
- 
Limit for relative MIP gap. 
- var SCALING
- 
Advanced usage: enable or disable matrix scaling. 
- var SCALING_OFF
- 
Scaling is off. 
- var SCALING_ON
- 
Scaling is on. 
- var kDefaultDualTolerance
- var kDefaultIncrementality
- var kDefaultPresolve
- var kDefaultPrimalTolerance
- var kDefaultRelativeMipGap
 BARRIERDUALDUAL_TOLERANCEINCREMENTALITYINCREMENTALITY_OFFINCREMENTALITY_ONLP_ALGORITHMPRESOLVEPRESOLVE_OFFPRESOLVE_ONPRIMALPRIMAL_TOLERANCERELATIVE_MIP_GAPSCALINGSCALING_OFFSCALING_ONkDefaultDualTolerancekDefaultIncrementalitykDefaultPresolvekDefaultPrimalTolerancekDefaultRelativeMipGapMethods- def GetDoubleParam(self, param: operations_research::MPSolverParameters::DoubleParam) -> 'double'
- 
Returns the value of a double parameter. Expand source codedef GetDoubleParam(self, param: "operations_research::MPSolverParameters::DoubleParam") -> "double": r""" Returns the value of a double parameter.""" return _pywraplp.MPSolverParameters_GetDoubleParam(self, param)
- def GetIntegerParam(self, param: operations_research::MPSolverParameters::IntegerParam) -> 'int'
- 
Returns the value of an integer parameter. Expand source codedef GetIntegerParam(self, param: "operations_research::MPSolverParameters::IntegerParam") -> "int": r""" Returns the value of an integer parameter.""" return _pywraplp.MPSolverParameters_GetIntegerParam(self, param)
- def SetDoubleParam(self, param: operations_research::MPSolverParameters::DoubleParam, value: double) -> 'void'
- 
Sets a double parameter to a specific value. Expand source codedef SetDoubleParam(self, param: "operations_research::MPSolverParameters::DoubleParam", value: "double") -> "void": r""" Sets a double parameter to a specific value.""" return _pywraplp.MPSolverParameters_SetDoubleParam(self, param, value)
- def SetIntegerParam(self, param: operations_research::MPSolverParameters::IntegerParam, value: int) -> 'void'
- 
Sets a integer parameter to a specific value. Expand source codedef SetIntegerParam(self, param: "operations_research::MPSolverParameters::IntegerParam", value: "int") -> "void": r""" Sets a integer parameter to a specific value.""" return _pywraplp.MPSolverParameters_SetIntegerParam(self, param, value)
 GetDoubleParamGetIntegerParamSetDoubleParamSetIntegerParam
- class ModelExportOptions
- 
Export options. Expand source codeclass ModelExportOptions(object): r""" Export options.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _pywraplp.ModelExportOptions_swiginit(self, _pywraplp.new_ModelExportOptions()) __swig_destroy__ = _pywraplp.delete_ModelExportOptions
- class Objective (*args, **kwargs)
- 
A class to express a linear objective. Expand source codeclass Objective(object): r""" A class to express a linear objective.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def Clear(self) -> "void": r""" Clears the offset, all variables and coefficients, and the optimization direction. """ return _pywraplp.Objective_Clear(self) def SetCoefficient(self, var: "Variable", coeff: "double") -> "void": r""" Sets the coefficient of the variable in the objective. If the variable does not belong to the solver, the function just returns, or crashes in non-opt mode. """ return _pywraplp.Objective_SetCoefficient(self, var, coeff) def GetCoefficient(self, var: "Variable") -> "double": r""" Gets the coefficient of a given variable in the objective It returns 0 if the variable does not appear in the objective). """ return _pywraplp.Objective_GetCoefficient(self, var) def SetOffset(self, value: "double") -> "void": r""" Sets the constant term in the objective.""" return _pywraplp.Objective_SetOffset(self, value) def offset(self) -> "double": r""" Gets the constant term in the objective.""" return _pywraplp.Objective_offset(self) def SetOptimizationDirection(self, maximize: "bool") -> "void": r""" Sets the optimization direction (maximize: true or minimize: false).""" return _pywraplp.Objective_SetOptimizationDirection(self, maximize) def SetMinimization(self) -> "void": r""" Sets the optimization direction to minimize.""" return _pywraplp.Objective_SetMinimization(self) def SetMaximization(self) -> "void": r""" Sets the optimization direction to maximize.""" return _pywraplp.Objective_SetMaximization(self) def maximization(self) -> "bool": r""" Is the optimization direction set to maximize?""" return _pywraplp.Objective_maximization(self) def minimization(self) -> "bool": r""" Is the optimization direction set to minimize?""" return _pywraplp.Objective_minimization(self) def Value(self) -> "double": r""" Returns the objective value of the best solution found so far. It is the optimal objective value if the problem has been solved to optimality. Note: the objective value may be slightly different than what you could compute yourself using ``MPVariable::solution_value();`` please use the --verify_solution flag to gain confidence about the numerical stability of your solution. """ return _pywraplp.Objective_Value(self) def BestBound(self) -> "double": r""" Returns the best objective bound. In case of minimization, it is a lower bound on the objective value of the optimal integer solution. Only available for discrete problems. """ return _pywraplp.Objective_BestBound(self) def Offset(self) -> "double": return _pywraplp.Objective_Offset(self) __swig_destroy__ = _pywraplp.delete_ObjectiveMethods- def BestBound(self) -> 'double'
- 
Returns the best objective bound. In case of minimization, it is a lower bound on the objective value of the optimal integer solution. Only available for discrete problems. Expand source codedef BestBound(self) -> "double": r""" Returns the best objective bound. In case of minimization, it is a lower bound on the objective value of the optimal integer solution. Only available for discrete problems. """ return _pywraplp.Objective_BestBound(self)
- def Clear(self) -> 'void'
- 
Clears the offset, all variables and coefficients, and the optimization direction. Expand source codedef Clear(self) -> "void": r""" Clears the offset, all variables and coefficients, and the optimization direction. """ return _pywraplp.Objective_Clear(self)
- def GetCoefficient(self, var: Variable) -> 'double'
- 
Gets the coefficient of a given variable in the objective It returns 0 if the variable does not appear in the objective). Expand source codedef GetCoefficient(self, var: "Variable") -> "double": r""" Gets the coefficient of a given variable in the objective It returns 0 if the variable does not appear in the objective). """ return _pywraplp.Objective_GetCoefficient(self, var)
- def Offset(self) -> 'double'
- 
Expand source codedef Offset(self) -> "double": return _pywraplp.Objective_Offset(self)
- def SetCoefficient(self, var: Variable, coeff: double) -> 'void'
- 
Sets the coefficient of the variable in the objective. If the variable does not belong to the solver, the function just returns, or crashes in non-opt mode. Expand source codedef SetCoefficient(self, var: "Variable", coeff: "double") -> "void": r""" Sets the coefficient of the variable in the objective. If the variable does not belong to the solver, the function just returns, or crashes in non-opt mode. """ return _pywraplp.Objective_SetCoefficient(self, var, coeff)
- def SetMaximization(self) -> 'void'
- 
Sets the optimization direction to maximize. Expand source codedef SetMaximization(self) -> "void": r""" Sets the optimization direction to maximize.""" return _pywraplp.Objective_SetMaximization(self)
- def SetMinimization(self) -> 'void'
- 
Sets the optimization direction to minimize. Expand source codedef SetMinimization(self) -> "void": r""" Sets the optimization direction to minimize.""" return _pywraplp.Objective_SetMinimization(self)
- def SetOffset(self, value: double) -> 'void'
- 
Sets the constant term in the objective. Expand source codedef SetOffset(self, value: "double") -> "void": r""" Sets the constant term in the objective.""" return _pywraplp.Objective_SetOffset(self, value)
- def SetOptimizationDirection(self, maximize: bool) -> 'void'
- 
Sets the optimization direction (maximize: true or minimize: false). Expand source codedef SetOptimizationDirection(self, maximize: "bool") -> "void": r""" Sets the optimization direction (maximize: true or minimize: false).""" return _pywraplp.Objective_SetOptimizationDirection(self, maximize)
- def Value(self) -> 'double'
- 
Returns the objective value of the best solution found so far. It is the optimal objective value if the problem has been solved to optimality. Note: the objective value may be slightly different than what you could compute yourself using MPVariable::solution_value();please use the –verify_solution flag to gain confidence about the numerical stability of your solution.Expand source codedef Value(self) -> "double": r""" Returns the objective value of the best solution found so far. It is the optimal objective value if the problem has been solved to optimality. Note: the objective value may be slightly different than what you could compute yourself using ``MPVariable::solution_value();`` please use the --verify_solution flag to gain confidence about the numerical stability of your solution. """ return _pywraplp.Objective_Value(self)
- def maximization(self) -> bool
- 
Is the optimization direction set to maximize? Expand source codedef maximization(self) -> "bool": r""" Is the optimization direction set to maximize?""" return _pywraplp.Objective_maximization(self)
- def minimization(self) -> bool
- 
Is the optimization direction set to minimize? Expand source codedef minimization(self) -> "bool": r""" Is the optimization direction set to minimize?""" return _pywraplp.Objective_minimization(self)
- def offset(self) -> 'double'
- 
Gets the constant term in the objective. Expand source codedef offset(self) -> "double": r""" Gets the constant term in the objective.""" return _pywraplp.Objective_offset(self)
 BestBoundClearGetCoefficientOffsetSetCoefficientSetMaximizationSetMinimizationSetOffsetSetOptimizationDirectionValuemaximizationminimizationoffset
- class Solver (name: std::string const &, problem_type: operations_research::MPSolver::OptimizationProblemType)
- 
This mathematical programming (MP) solver class is the main class though which users build and solve problems. Create a solver with the given name and underlying solver backend. Expand source codeclass Solver(object): r""" This mathematical programming (MP) solver class is the main class though which users build and solve problems. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr CLP_LINEAR_PROGRAMMING = _pywraplp.Solver_CLP_LINEAR_PROGRAMMING r""" Linear Programming solver using Coin CBC.""" GLOP_LINEAR_PROGRAMMING = _pywraplp.Solver_GLOP_LINEAR_PROGRAMMING r""" Linear Programming solver using GLOP (Recommended solver).""" CBC_MIXED_INTEGER_PROGRAMMING = _pywraplp.Solver_CBC_MIXED_INTEGER_PROGRAMMING r""" Mixed integer Programming Solver using Coin CBC.""" BOP_INTEGER_PROGRAMMING = _pywraplp.Solver_BOP_INTEGER_PROGRAMMING r""" Linear Boolean Programming Solver.""" SAT_INTEGER_PROGRAMMING = _pywraplp.Solver_SAT_INTEGER_PROGRAMMING r""" SAT based solver (requires only integer and Boolean variables). If you pass it mixed integer problems, it will scale coefficients to integer values, and solve continuous variables as integral variables.""" def __init__(self, name: "std::string const &", problem_type: "operations_research::MPSolver::OptimizationProblemType"): r""" Create a solver with the given name and underlying solver backend.""" _pywraplp.Solver_swiginit(self, _pywraplp.new_Solver(name, problem_type)) __swig_destroy__ = _pywraplp.delete_Solver @staticmethod def SupportsProblemType(problem_type: "operations_research::MPSolver::OptimizationProblemType") -> "bool": r""" Whether the given problem type is supported (this will depend on the targets that you linked). """ return _pywraplp.Solver_SupportsProblemType(problem_type) def Clear(self) -> "void": r""" Clears the objective (including the optimization direction), all variables and constraints. All the other properties of the MPSolver (like the time limit) are kept untouched. """ return _pywraplp.Solver_Clear(self) def NumVariables(self) -> "int": r""" Returns the number of variables.""" return _pywraplp.Solver_NumVariables(self) def variables(self) -> "std::vector< operations_research::MPVariable * > const &": r""" Returns the array of variables handled by the MPSolver. (They are listed in the order in which they were created.) """ return _pywraplp.Solver_variables(self) def LookupVariable(self, var_name: "std::string const &") -> "operations_research::MPVariable *": r""" Looks up a variable by name, and returns nullptr if it does not exist. The first call has a O(n) complexity, as the variable name index is lazily created upon first use. Will crash if variable names are not unique. """ return _pywraplp.Solver_LookupVariable(self, var_name) def Var(self, lb: "double", ub: "double", integer: "bool", name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates a variable with the given bounds, integrality requirement and name. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver owns the variable (i.e. the returned pointer is borrowed). Variable names are optional. If you give an empty name, name() will auto-generate one for you upon request. """ return _pywraplp.Solver_Var(self, lb, ub, integer, name) def NumVar(self, lb: "double", ub: "double", name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates a continuous variable.""" return _pywraplp.Solver_NumVar(self, lb, ub, name) def IntVar(self, lb: "double", ub: "double", name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates an integer variable.""" return _pywraplp.Solver_IntVar(self, lb, ub, name) def BoolVar(self, name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates a boolean variable.""" return _pywraplp.Solver_BoolVar(self, name) def NumConstraints(self) -> "int": r""" Returns the number of constraints.""" return _pywraplp.Solver_NumConstraints(self) def constraints(self) -> "std::vector< operations_research::MPConstraint * > const &": r""" Returns the array of constraints handled by the MPSolver. They are listed in the order in which they were created. """ return _pywraplp.Solver_constraints(self) def LookupConstraint(self, constraint_name: "std::string const &") -> "operations_research::MPConstraint *": r""" Looks up a constraint by name, and returns nullptr if it does not exist. The first call has a O(n) complexity, as the constraint name index is lazily created upon first use. Will crash if constraint names are not unique. """ return _pywraplp.Solver_LookupConstraint(self, constraint_name) def Constraint(self, *args) -> "operations_research::MPConstraint *": r""" *Overload 1:* Creates a linear constraint with given bounds. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver class assumes ownership of the constraint. :rtype: :py:class:`MPConstraint` :return: a pointer to the newly created constraint. | *Overload 2:* Creates a constraint with -infinity and +infinity bounds. | *Overload 3:* Creates a named constraint with given bounds. | *Overload 4:* Creates a named constraint with -infinity and +infinity bounds. """ return _pywraplp.Solver_Constraint(self, *args) def Objective(self) -> "operations_research::MPObjective *": r""" Returns the mutable objective object.""" return _pywraplp.Solver_Objective(self) OPTIMAL = _pywraplp.Solver_OPTIMAL r""" optimal.""" FEASIBLE = _pywraplp.Solver_FEASIBLE r""" feasible, or stopped by limit.""" INFEASIBLE = _pywraplp.Solver_INFEASIBLE r""" proven infeasible.""" UNBOUNDED = _pywraplp.Solver_UNBOUNDED r""" proven unbounded.""" ABNORMAL = _pywraplp.Solver_ABNORMAL r""" abnormal, i.e., error of some kind.""" NOT_SOLVED = _pywraplp.Solver_NOT_SOLVED r""" not been solved yet.""" def Solve(self, *args) -> "operations_research::MPSolver::ResultStatus": r""" *Overload 1:* Solves the problem using the default parameter values. | *Overload 2:* Solves the problem using the specified parameter values. """ return _pywraplp.Solver_Solve(self, *args) def ComputeConstraintActivities(self) -> "std::vector< double >": r""" Advanced usage: compute the "activities" of all constraints, which are the sums of their linear terms. The activities are returned in the same order as constraints(), which is the order in which constraints were added; but you can also use MPConstraint::index() to get a constraint's index. """ return _pywraplp.Solver_ComputeConstraintActivities(self) def VerifySolution(self, tolerance: "double", log_errors: "bool") -> "bool": r""" Advanced usage: Verifies the *correctness* of the solution. It verifies that all variables must be within their domains, all constraints must be satisfied, and the reported objective value must be accurate. Usage: - This can only be called after Solve() was called. - "tolerance" is interpreted as an absolute error threshold. - For the objective value only, if the absolute error is too large, the tolerance is interpreted as a relative error threshold instead. - If "log_errors" is true, every single violation will be logged. - If "tolerance" is negative, it will be set to infinity(). Most users should just set the --verify_solution flag and not bother using this method directly. """ return _pywraplp.Solver_VerifySolution(self, tolerance, log_errors) def InterruptSolve(self) -> "bool": r""" Interrupts the Solve() execution to terminate processing if possible. If the underlying interface supports interruption; it does that and returns true regardless of whether there's an ongoing Solve() or not. The Solve() call may still linger for a while depending on the conditions. If interruption is not supported; returns false and does nothing. """ return _pywraplp.Solver_InterruptSolve(self) def FillSolutionResponseProto(self, response: "operations_research::MPSolutionResponse *") -> "void": r""" Encodes the current solution in a solution response protocol buffer.""" return _pywraplp.Solver_FillSolutionResponseProto(self, response) @staticmethod def SolveWithProto(model_request: "operations_research::MPModelRequest const &", response: "operations_research::MPSolutionResponse *") -> "operations_research::MPSolutionResponse *": r""" Solves the model encoded by a MPModelRequest protocol buffer and fills the solution encoded as a MPSolutionResponse. Note(user): This creates a temporary MPSolver and destroys it at the end. If you want to keep the MPSolver alive (for debugging, or for incremental solving), you should write another version of this function that creates the MPSolver object on the heap and returns it. """ return _pywraplp.Solver_SolveWithProto(model_request, response) def ExportModelToProto(self, output_model: "operations_research::MPModelProto *") -> "void": r""" Exports model to protocol buffer.""" return _pywraplp.Solver_ExportModelToProto(self, output_model) def LoadSolutionFromProto(self, *args) -> "util::Status": r""" Load a solution encoded in a protocol buffer onto this solver for easy access via the MPSolver interface. IMPORTANT: This may only be used in conjunction with ExportModel(), following this example: .. code-block:: c++ MPSolver my_solver; ... add variables and constraints ... MPModelProto model_proto; my_solver.ExportModelToProto(model_proto); MPSolutionResponse solver_response; MPSolver::SolveWithProto(model_proto, solver_response); if (solver_response.result_status() == MPSolutionResponse::OPTIMAL) { CHECK_OK(my_solver.LoadSolutionFromProto(solver_response)); ... inspect the solution using the usual API: solution_value(), etc... } The response must be in OPTIMAL or FEASIBLE status. Returns a non-OK status if a problem arised (typically, if it wasn't used like it should be): - loading a solution whose variables don't correspond to the solver's current variables - loading a solution with a status other than OPTIMAL / FEASIBLE. Note: the objective value isn't checked. You can use VerifySolution() for that. """ return _pywraplp.Solver_LoadSolutionFromProto(self, *args) def SetSolverSpecificParametersAsString(self, parameters: "std::string const &") -> "bool": r""" Advanced usage: pass solver specific parameters in text format. The format is solver-specific and is the same as the corresponding solver configuration file format. Returns true if the operation was successful. """ return _pywraplp.Solver_SetSolverSpecificParametersAsString(self, parameters) FREE = _pywraplp.Solver_FREE AT_LOWER_BOUND = _pywraplp.Solver_AT_LOWER_BOUND AT_UPPER_BOUND = _pywraplp.Solver_AT_UPPER_BOUND FIXED_VALUE = _pywraplp.Solver_FIXED_VALUE BASIC = _pywraplp.Solver_BASIC @staticmethod def infinity() -> "double": r""" Infinity. You can use -MPSolver::infinity() for negative infinity. """ return _pywraplp.Solver_infinity() def EnableOutput(self) -> "void": r""" Enables solver logging.""" return _pywraplp.Solver_EnableOutput(self) def SuppressOutput(self) -> "void": r""" Suppresses solver logging.""" return _pywraplp.Solver_SuppressOutput(self) def iterations(self) -> "int64": r""" Returns the number of simplex iterations.""" return _pywraplp.Solver_iterations(self) def nodes(self) -> "int64": r""" Returns the number of branch-and-bound nodes evaluated during the solve. Only available for discrete problems. """ return _pywraplp.Solver_nodes(self) def ComputeExactConditionNumber(self) -> "double": r""" Advanced usage: computes the exact condition number of the current scaled basis: L1norm(B) * L1norm(inverse(B)), where B is the scaled basis. This method requires that a basis exists: it should be called after Solve. It is only available for continuous problems. It is implemented for GLPK but not CLP because CLP does not provide the API for doing it. The condition number measures how well the constraint matrix is conditioned and can be used to predict whether numerical issues will arise during the solve: the model is declared infeasible whereas it is feasible (or vice-versa), the solution obtained is not optimal or violates some constraints, the resolution is slow because of repeated singularities. The rule of thumb to interpret the condition number kappa is: - o kappa <= 1e7: virtually no chance of numerical issues - o 1e7 < kappa <= 1e10: small chance of numerical issues - o 1e10 < kappa <= 1e13: medium chance of numerical issues - o kappa > 1e13: high chance of numerical issues The computation of the condition number depends on the quality of the LU decomposition, so it is not very accurate when the matrix is ill conditioned. """ return _pywraplp.Solver_ComputeExactConditionNumber(self) def NextSolution(self) -> "bool": r""" Some solvers (MIP only, not LP) can produce multiple solutions to the problem. Returns true when another solution is available, and updates the MPVariable* objects to make the new solution queryable. Call only after calling solve. The optimality properties of the additional solutions found, and whether or not the solver computes them ahead of time or when NextSolution() is called is solver specific. As of 2020-02-10, only Gurobi and SCIP support NextSolution(), see linear_solver_interfaces_test for an example of how to configure these solvers for multiple solutions. Other solvers return false unconditionally. """ return _pywraplp.Solver_NextSolution(self) def set_time_limit(self, time_limit_milliseconds: "int64") -> "void": return _pywraplp.Solver_set_time_limit(self, time_limit_milliseconds) def wall_time(self) -> "int64": return _pywraplp.Solver_wall_time(self) def LoadModelFromProto(self, input_model: "operations_research::MPModelProto const &") -> "std::string": return _pywraplp.Solver_LoadModelFromProto(self, input_model) def ExportModelAsLpFormat(self, obfuscated: "bool") -> "std::string": return _pywraplp.Solver_ExportModelAsLpFormat(self, obfuscated) def ExportModelAsMpsFormat(self, fixed_format: "bool", obfuscated: "bool") -> "std::string": return _pywraplp.Solver_ExportModelAsMpsFormat(self, fixed_format, obfuscated) def SetHint(self, variables: "std::vector< operations_research::MPVariable * > const &", values: "std::vector< double > const &") -> "void": r""" Set a hint for solution. If a feasible or almost-feasible solution to the problem is already known, it may be helpful to pass it to the solver so that it can be used. A solver that supports this feature will try to use this information to create its initial feasible solution. Note that it may not always be faster to give a hint like this to the solver. There is also no guarantee that the solver will use this hint or try to return a solution "close" to this assignment in case of multiple optimal solutions.""" return _pywraplp.Solver_SetHint(self, variables, values) def SetNumThreads(self, num_theads: "int") -> "bool": r""" Sets the number of threads to be used by the solver.""" return _pywraplp.Solver_SetNumThreads(self, num_theads) def Add(self, constraint, name=''): if isinstance(constraint, bool): if constraint: return self.RowConstraint(0, 0, name) else: return self.RowConstraint(1, 1, name) else: return constraint.Extract(self, name) def Sum(self, expr_array): result = SumArray(expr_array) return result def RowConstraint(self, *args): return self.Constraint(*args) def Minimize(self, expr): objective = self.Objective() objective.Clear() objective.SetMinimization() if isinstance(expr, numbers.Number): objective.SetOffset(expr) else: coeffs = expr.GetCoeffs() objective.SetOffset(coeffs.pop(OFFSET_KEY, 0.0)) for v, c, in list(coeffs.items()): objective.SetCoefficient(v, float(c)) def Maximize(self, expr): objective = self.Objective() objective.Clear() objective.SetMaximization() if isinstance(expr, numbers.Number): objective.SetOffset(expr) else: coeffs = expr.GetCoeffs() objective.SetOffset(coeffs.pop(OFFSET_KEY, 0.0)) for v, c, in list(coeffs.items()): objective.SetCoefficient(v, float(c)) @staticmethod def Infinity() -> "double": return _pywraplp.Solver_Infinity() def SetTimeLimit(self, x: "int64") -> "void": return _pywraplp.Solver_SetTimeLimit(self, x) def WallTime(self) -> "int64": return _pywraplp.Solver_WallTime(self) def Iterations(self) -> "int64": return _pywraplp.Solver_Iterations(self)Class variables- var ABNORMAL
- 
abnormal, i.e., error of some kind. 
- var AT_LOWER_BOUND
- var AT_UPPER_BOUND
- var BASIC
- var BOP_INTEGER_PROGRAMMING
- 
Linear Boolean Programming Solver. 
- var CBC_MIXED_INTEGER_PROGRAMMING
- 
Mixed integer Programming Solver using Coin CBC. 
- var CLP_LINEAR_PROGRAMMING
- 
Linear Programming solver using Coin CBC. 
- var FEASIBLE
- 
feasible, or stopped by limit. 
- var FIXED_VALUE
- var FREE
- var GLOP_LINEAR_PROGRAMMING
- 
Linear Programming solver using GLOP (Recommended solver). 
- var INFEASIBLE
- 
proven infeasible. 
- var NOT_SOLVED
- 
not been solved yet. 
- var OPTIMAL
- 
optimal. 
- var SAT_INTEGER_PROGRAMMING
- 
SAT based solver (requires only integer and Boolean variables). If you pass it mixed integer problems, it will scale coefficients to integer values, and solve continuous variables as integral variables. 
- var UNBOUNDED
- 
proven unbounded. 
 ABNORMALAT_LOWER_BOUNDAT_UPPER_BOUNDBASICBOP_INTEGER_PROGRAMMINGCBC_MIXED_INTEGER_PROGRAMMINGCLP_LINEAR_PROGRAMMINGFEASIBLEFIXED_VALUEFREEGLOP_LINEAR_PROGRAMMINGINFEASIBLENOT_SOLVEDOPTIMALSAT_INTEGER_PROGRAMMINGUNBOUNDEDStatic methods- def Infinity() -> 'double'
- 
Expand source code@staticmethod def Infinity() -> "double": return _pywraplp.Solver_Infinity()
- def SolveWithProto(model_request: operations_research::MPModelRequest const &, response: operations_research::MPSolutionResponse *) -> 'operations_research::MPSolutionResponse *'
- 
Solves the model encoded by a MPModelRequest protocol buffer and fills the solution encoded as a MPSolutionResponse. Note(user): This creates a temporary MPSolver and destroys it at the end. If you want to keep the MPSolver alive (for debugging, or for incremental solving), you should write another version of this function that creates the MPSolver object on the heap and returns it. Expand source code@staticmethod def SolveWithProto(model_request: "operations_research::MPModelRequest const &", response: "operations_research::MPSolutionResponse *") -> "operations_research::MPSolutionResponse *": r""" Solves the model encoded by a MPModelRequest protocol buffer and fills the solution encoded as a MPSolutionResponse. Note(user): This creates a temporary MPSolver and destroys it at the end. If you want to keep the MPSolver alive (for debugging, or for incremental solving), you should write another version of this function that creates the MPSolver object on the heap and returns it. """ return _pywraplp.Solver_SolveWithProto(model_request, response)
- def SupportsProblemType(problem_type: operations_research::MPSolver::OptimizationProblemType) -> 'bool'
- 
Whether the given problem type is supported (this will depend on the targets that you linked). Expand source code@staticmethod def SupportsProblemType(problem_type: "operations_research::MPSolver::OptimizationProblemType") -> "bool": r""" Whether the given problem type is supported (this will depend on the targets that you linked). """ return _pywraplp.Solver_SupportsProblemType(problem_type)
- def infinity() -> 'double'
- 
Infinity. You can use -MPSolver::infinity() for negative infinity. Expand source code@staticmethod def infinity() -> "double": r""" Infinity. You can use -MPSolver::infinity() for negative infinity. """ return _pywraplp.Solver_infinity()
 InfinitySolveWithProtoSupportsProblemTypeinfinityMethods- def Add(self, constraint, name='')
- 
Expand source codedef Add(self, constraint, name=''): if isinstance(constraint, bool): if constraint: return self.RowConstraint(0, 0, name) else: return self.RowConstraint(1, 1, name) else: return constraint.Extract(self, name)
- def BoolVar(self, name: std::string const &) -> 'operations_research::MPVariable *'
- 
Creates a boolean variable. Expand source codedef BoolVar(self, name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates a boolean variable.""" return _pywraplp.Solver_BoolVar(self, name)
- def Clear(self) -> 'void'
- 
Clears the objective (including the optimization direction), all variables and constraints. All the other properties of the MPSolver (like the time limit) are kept untouched. Expand source codedef Clear(self) -> "void": r""" Clears the objective (including the optimization direction), all variables and constraints. All the other properties of the MPSolver (like the time limit) are kept untouched. """ return _pywraplp.Solver_Clear(self)
- def ComputeConstraintActivities(self) -> 'std::vector< double >'
- 
Advanced usage: compute the "activities" of all constraints, which are the sums of their linear terms. The activities are returned in the same order as constraints(), which is the order in which constraints were added; but you can also use MPConstraint::index() to get a constraint's index. Expand source codedef ComputeConstraintActivities(self) -> "std::vector< double >": r""" Advanced usage: compute the "activities" of all constraints, which are the sums of their linear terms. The activities are returned in the same order as constraints(), which is the order in which constraints were added; but you can also use MPConstraint::index() to get a constraint's index. """ return _pywraplp.Solver_ComputeConstraintActivities(self)
- def ComputeExactConditionNumber(self) -> 'double'
- 
Advanced usage: computes the exact condition number of the current scaled basis: L1norm(B) * L1norm(inverse(B)), where B is the scaled basis. This method requires that a basis exists: it should be called after Solve. It is only available for continuous problems. It is implemented for GLPK but not CLP because CLP does not provide the API for doing it. The condition number measures how well the constraint matrix is conditioned and can be used to predict whether numerical issues will arise during the solve: the model is declared infeasible whereas it is feasible (or vice-versa), the solution obtained is not optimal or violates some constraints, the resolution is slow because of repeated singularities. The rule of thumb to interpret the condition number kappa is: - o kappa <= 1e7: virtually no chance of numerical issues - o 1e7 < kappa <= 1e10: small chance of numerical issues - o 1e10 < kappa <= 1e13: medium chance of numerical issues - o kappa > 1e13: high chance of numerical issues The computation of the condition number depends on the quality of the LU decomposition, so it is not very accurate when the matrix is ill conditioned. Expand source codedef ComputeExactConditionNumber(self) -> "double": r""" Advanced usage: computes the exact condition number of the current scaled basis: L1norm(B) * L1norm(inverse(B)), where B is the scaled basis. This method requires that a basis exists: it should be called after Solve. It is only available for continuous problems. It is implemented for GLPK but not CLP because CLP does not provide the API for doing it. The condition number measures how well the constraint matrix is conditioned and can be used to predict whether numerical issues will arise during the solve: the model is declared infeasible whereas it is feasible (or vice-versa), the solution obtained is not optimal or violates some constraints, the resolution is slow because of repeated singularities. The rule of thumb to interpret the condition number kappa is: - o kappa <= 1e7: virtually no chance of numerical issues - o 1e7 < kappa <= 1e10: small chance of numerical issues - o 1e10 < kappa <= 1e13: medium chance of numerical issues - o kappa > 1e13: high chance of numerical issues The computation of the condition number depends on the quality of the LU decomposition, so it is not very accurate when the matrix is ill conditioned. """ return _pywraplp.Solver_ComputeExactConditionNumber(self)
- def Constraint(self, *args) -> 'operations_research::MPConstraint *'
- 
Overload 1: Creates a linear constraint with given bounds. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver class assumes ownership of the constraint. :rtype: :py:class: MPConstraint:return: a pointer to the newly created constraint.| Overload 2: Creates a constraint with -infinity and +infinity bounds. | Overload 3: Creates a named constraint with given bounds. | Overload 4: Creates a named constraint with -infinity and +infinity bounds. Expand source codedef Constraint(self, *args) -> "operations_research::MPConstraint *": r""" *Overload 1:* Creates a linear constraint with given bounds. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver class assumes ownership of the constraint. :rtype: :py:class:`MPConstraint` :return: a pointer to the newly created constraint. | *Overload 2:* Creates a constraint with -infinity and +infinity bounds. | *Overload 3:* Creates a named constraint with given bounds. | *Overload 4:* Creates a named constraint with -infinity and +infinity bounds. """ return _pywraplp.Solver_Constraint(self, *args)
- def EnableOutput(self) -> 'void'
- 
Enables solver logging. Expand source codedef EnableOutput(self) -> "void": r""" Enables solver logging.""" return _pywraplp.Solver_EnableOutput(self)
- def ExportModelAsLpFormat(self, obfuscated: bool) -> 'std::string'
- 
Expand source codedef ExportModelAsLpFormat(self, obfuscated: "bool") -> "std::string": return _pywraplp.Solver_ExportModelAsLpFormat(self, obfuscated)
- def ExportModelAsMpsFormat(self, fixed_format: bool, obfuscated: bool) -> 'std::string'
- 
Expand source codedef ExportModelAsMpsFormat(self, fixed_format: "bool", obfuscated: "bool") -> "std::string": return _pywraplp.Solver_ExportModelAsMpsFormat(self, fixed_format, obfuscated)
- def ExportModelToProto(self, output_model: operations_research::MPModelProto *) -> 'void'
- 
Exports model to protocol buffer. Expand source codedef ExportModelToProto(self, output_model: "operations_research::MPModelProto *") -> "void": r""" Exports model to protocol buffer.""" return _pywraplp.Solver_ExportModelToProto(self, output_model)
- def FillSolutionResponseProto(self, response: operations_research::MPSolutionResponse *) -> 'void'
- 
Encodes the current solution in a solution response protocol buffer. Expand source codedef FillSolutionResponseProto(self, response: "operations_research::MPSolutionResponse *") -> "void": r""" Encodes the current solution in a solution response protocol buffer.""" return _pywraplp.Solver_FillSolutionResponseProto(self, response)
- def IntVar(self, lb: double, ub: double, name: std::string const &) -> 'operations_research::MPVariable *'
- 
Creates an integer variable. Expand source codedef IntVar(self, lb: "double", ub: "double", name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates an integer variable.""" return _pywraplp.Solver_IntVar(self, lb, ub, name)
- def InterruptSolve(self) -> bool
- 
Interrupts the Solve() execution to terminate processing if possible. If the underlying interface supports interruption; it does that and returns true regardless of whether there's an ongoing Solve() or not. The Solve() call may still linger for a while depending on the conditions. If interruption is not supported; returns false and does nothing. Expand source codedef InterruptSolve(self) -> "bool": r""" Interrupts the Solve() execution to terminate processing if possible. If the underlying interface supports interruption; it does that and returns true regardless of whether there's an ongoing Solve() or not. The Solve() call may still linger for a while depending on the conditions. If interruption is not supported; returns false and does nothing. """ return _pywraplp.Solver_InterruptSolve(self)
- def Iterations(self) -> 'int64'
- 
Expand source codedef Iterations(self) -> "int64": return _pywraplp.Solver_Iterations(self)
- def LoadModelFromProto(self, input_model: operations_research::MPModelProto const &) -> 'std::string'
- 
Expand source codedef LoadModelFromProto(self, input_model: "operations_research::MPModelProto const &") -> "std::string": return _pywraplp.Solver_LoadModelFromProto(self, input_model)
- def LoadSolutionFromProto(self, *args) -> 'util::Status'
- 
Load a solution encoded in a protocol buffer onto this solver for easy access via the MPSolver interface. IMPORTANT: This may only be used in conjunction with ExportModel(), following this example: .. code-block:: c++ MPSolver my_solver; ... add variables and constraints ... MPModelProto model_proto; my_solver.ExportModelToProto(model_proto); MPSolutionResponse solver_response; MPSolver::SolveWithProto(model_proto, solver_response); if (solver_response.result_status() == MPSolutionResponse::OPTIMAL) { CHECK_OK(my_solver.LoadSolutionFromProto(solver_response)); ... inspect the solution using the usual API: solution_value(), etc... }The response must be in OPTIMAL or FEASIBLE status. Returns a non-OK status if a problem arised (typically, if it wasn't used like it should be): - loading a solution whose variables don't correspond to the solver's current variables - loading a solution with a status other than OPTIMAL / FEASIBLE. Note: the objective value isn't checked. You can use VerifySolution() for that. Expand source codedef LoadSolutionFromProto(self, *args) -> "util::Status": r""" Load a solution encoded in a protocol buffer onto this solver for easy access via the MPSolver interface. IMPORTANT: This may only be used in conjunction with ExportModel(), following this example: .. code-block:: c++ MPSolver my_solver; ... add variables and constraints ... MPModelProto model_proto; my_solver.ExportModelToProto(model_proto); MPSolutionResponse solver_response; MPSolver::SolveWithProto(model_proto, solver_response); if (solver_response.result_status() == MPSolutionResponse::OPTIMAL) { CHECK_OK(my_solver.LoadSolutionFromProto(solver_response)); ... inspect the solution using the usual API: solution_value(), etc... } The response must be in OPTIMAL or FEASIBLE status. Returns a non-OK status if a problem arised (typically, if it wasn't used like it should be): - loading a solution whose variables don't correspond to the solver's current variables - loading a solution with a status other than OPTIMAL / FEASIBLE. Note: the objective value isn't checked. You can use VerifySolution() for that. """ return _pywraplp.Solver_LoadSolutionFromProto(self, *args)
- def LookupConstraint(self, constraint_name: std::string const &) -> 'operations_research::MPConstraint *'
- 
Looks up a constraint by name, and returns nullptr if it does not exist. The first call has a O(n) complexity, as the constraint name index is lazily created upon first use. Will crash if constraint names are not unique. Expand source codedef LookupConstraint(self, constraint_name: "std::string const &") -> "operations_research::MPConstraint *": r""" Looks up a constraint by name, and returns nullptr if it does not exist. The first call has a O(n) complexity, as the constraint name index is lazily created upon first use. Will crash if constraint names are not unique. """ return _pywraplp.Solver_LookupConstraint(self, constraint_name)
- def LookupVariable(self, var_name: std::string const &) -> 'operations_research::MPVariable *'
- 
Looks up a variable by name, and returns nullptr if it does not exist. The first call has a O(n) complexity, as the variable name index is lazily created upon first use. Will crash if variable names are not unique. Expand source codedef LookupVariable(self, var_name: "std::string const &") -> "operations_research::MPVariable *": r""" Looks up a variable by name, and returns nullptr if it does not exist. The first call has a O(n) complexity, as the variable name index is lazily created upon first use. Will crash if variable names are not unique. """ return _pywraplp.Solver_LookupVariable(self, var_name)
- def Maximize(self, expr)
- 
Expand source codedef Maximize(self, expr): objective = self.Objective() objective.Clear() objective.SetMaximization() if isinstance(expr, numbers.Number): objective.SetOffset(expr) else: coeffs = expr.GetCoeffs() objective.SetOffset(coeffs.pop(OFFSET_KEY, 0.0)) for v, c, in list(coeffs.items()): objective.SetCoefficient(v, float(c))
- def Minimize(self, expr)
- 
Expand source codedef Minimize(self, expr): objective = self.Objective() objective.Clear() objective.SetMinimization() if isinstance(expr, numbers.Number): objective.SetOffset(expr) else: coeffs = expr.GetCoeffs() objective.SetOffset(coeffs.pop(OFFSET_KEY, 0.0)) for v, c, in list(coeffs.items()): objective.SetCoefficient(v, float(c))
- def NextSolution(self) -> bool
- 
Some solvers (MIP only, not LP) can produce multiple solutions to the problem. Returns true when another solution is available, and updates the MPVariable* objects to make the new solution queryable. Call only after calling solve. The optimality properties of the additional solutions found, and whether or not the solver computes them ahead of time or when NextSolution() is called is solver specific. As of 2020-02-10, only Gurobi and SCIP support NextSolution(), see linear_solver_interfaces_test for an example of how to configure these solvers for multiple solutions. Other solvers return false unconditionally. Expand source codedef NextSolution(self) -> "bool": r""" Some solvers (MIP only, not LP) can produce multiple solutions to the problem. Returns true when another solution is available, and updates the MPVariable* objects to make the new solution queryable. Call only after calling solve. The optimality properties of the additional solutions found, and whether or not the solver computes them ahead of time or when NextSolution() is called is solver specific. As of 2020-02-10, only Gurobi and SCIP support NextSolution(), see linear_solver_interfaces_test for an example of how to configure these solvers for multiple solutions. Other solvers return false unconditionally. """ return _pywraplp.Solver_NextSolution(self)
- def NumConstraints(self) -> int
- 
Returns the number of constraints. Expand source codedef NumConstraints(self) -> "int": r""" Returns the number of constraints.""" return _pywraplp.Solver_NumConstraints(self)
- def NumVar(self, lb: double, ub: double, name: std::string const &) -> 'operations_research::MPVariable *'
- 
Creates a continuous variable. Expand source codedef NumVar(self, lb: "double", ub: "double", name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates a continuous variable.""" return _pywraplp.Solver_NumVar(self, lb, ub, name)
- def NumVariables(self) -> int
- 
Returns the number of variables. Expand source codedef NumVariables(self) -> "int": r""" Returns the number of variables.""" return _pywraplp.Solver_NumVariables(self)
- def Objective(self) -> 'operations_research::MPObjective *'
- 
Returns the mutable objective object. Expand source codedef Objective(self) -> "operations_research::MPObjective *": r""" Returns the mutable objective object.""" return _pywraplp.Solver_Objective(self)
- def RowConstraint(self, *args)
- 
Expand source codedef RowConstraint(self, *args): return self.Constraint(*args)
- def SetHint(self, variables: std::vector< operations_research::MPVariable * > const &, values: std::vector< double > const &) -> 'void'
- 
Set a hint for solution. If a feasible or almost-feasible solution to the problem is already known, it may be helpful to pass it to the solver so that it can be used. A solver that supports this feature will try to use this information to create its initial feasible solution. Note that it may not always be faster to give a hint like this to the solver. There is also no guarantee that the solver will use this hint or try to return a solution "close" to this assignment in case of multiple optimal solutions. Expand source codedef SetHint(self, variables: "std::vector< operations_research::MPVariable * > const &", values: "std::vector< double > const &") -> "void": r""" Set a hint for solution. If a feasible or almost-feasible solution to the problem is already known, it may be helpful to pass it to the solver so that it can be used. A solver that supports this feature will try to use this information to create its initial feasible solution. Note that it may not always be faster to give a hint like this to the solver. There is also no guarantee that the solver will use this hint or try to return a solution "close" to this assignment in case of multiple optimal solutions.""" return _pywraplp.Solver_SetHint(self, variables, values)
- def SetNumThreads(self, num_theads: int) -> bool
- 
Sets the number of threads to be used by the solver. Expand source codedef SetNumThreads(self, num_theads: "int") -> "bool": r""" Sets the number of threads to be used by the solver.""" return _pywraplp.Solver_SetNumThreads(self, num_theads)
- def SetSolverSpecificParametersAsString(self, parameters: std::string const &) -> 'bool'
- 
Advanced usage: pass solver specific parameters in text format. The format is solver-specific and is the same as the corresponding solver configuration file format. Returns true if the operation was successful. Expand source codedef SetSolverSpecificParametersAsString(self, parameters: "std::string const &") -> "bool": r""" Advanced usage: pass solver specific parameters in text format. The format is solver-specific and is the same as the corresponding solver configuration file format. Returns true if the operation was successful. """ return _pywraplp.Solver_SetSolverSpecificParametersAsString(self, parameters)
- def SetTimeLimit(self, x: int64) -> 'void'
- 
Expand source codedef SetTimeLimit(self, x: "int64") -> "void": return _pywraplp.Solver_SetTimeLimit(self, x)
- def Solve(self, *args) -> 'operations_research::MPSolver::ResultStatus'
- 
Overload 1: Solves the problem using the default parameter values. | Overload 2: Solves the problem using the specified parameter values. Expand source codedef Solve(self, *args) -> "operations_research::MPSolver::ResultStatus": r""" *Overload 1:* Solves the problem using the default parameter values. | *Overload 2:* Solves the problem using the specified parameter values. """ return _pywraplp.Solver_Solve(self, *args)
- def Sum(self, expr_array)
- 
Expand source codedef Sum(self, expr_array): result = SumArray(expr_array) return result
- def SuppressOutput(self) -> 'void'
- 
Suppresses solver logging. Expand source codedef SuppressOutput(self) -> "void": r""" Suppresses solver logging.""" return _pywraplp.Solver_SuppressOutput(self)
- def Var(self, lb: double, ub: double, integer: bool, name: std::string const &) -> 'operations_research::MPVariable *'
- 
Creates a variable with the given bounds, integrality requirement and name. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver owns the variable (i.e. the returned pointer is borrowed). Variable names are optional. If you give an empty name, name() will auto-generate one for you upon request. Expand source codedef Var(self, lb: "double", ub: "double", integer: "bool", name: "std::string const &") -> "operations_research::MPVariable *": r""" Creates a variable with the given bounds, integrality requirement and name. Bounds can be finite or +/- MPSolver::infinity(). The MPSolver owns the variable (i.e. the returned pointer is borrowed). Variable names are optional. If you give an empty name, name() will auto-generate one for you upon request. """ return _pywraplp.Solver_Var(self, lb, ub, integer, name)
- def VerifySolution(self, tolerance: double, log_errors: bool) -> 'bool'
- 
Advanced usage: Verifies the correctness of the solution. It verifies that all variables must be within their domains, all constraints must be satisfied, and the reported objective value must be accurate. Usage: - This can only be called after Solve() was called. - "tolerance" is interpreted as an absolute error threshold. - For the objective value only, if the absolute error is too large, the tolerance is interpreted as a relative error threshold instead. - If "log_errors" is true, every single violation will be logged. - If "tolerance" is negative, it will be set to infinity(). Most users should just set the –verify_solution flag and not bother using this method directly. Expand source codedef VerifySolution(self, tolerance: "double", log_errors: "bool") -> "bool": r""" Advanced usage: Verifies the *correctness* of the solution. It verifies that all variables must be within their domains, all constraints must be satisfied, and the reported objective value must be accurate. Usage: - This can only be called after Solve() was called. - "tolerance" is interpreted as an absolute error threshold. - For the objective value only, if the absolute error is too large, the tolerance is interpreted as a relative error threshold instead. - If "log_errors" is true, every single violation will be logged. - If "tolerance" is negative, it will be set to infinity(). Most users should just set the --verify_solution flag and not bother using this method directly. """ return _pywraplp.Solver_VerifySolution(self, tolerance, log_errors)
- def WallTime(self) -> 'int64'
- 
Expand source codedef WallTime(self) -> "int64": return _pywraplp.Solver_WallTime(self)
- def constraints(self) -> 'std::vector< operations_research::MPConstraint * > const &'
- 
Returns the array of constraints handled by the MPSolver. They are listed in the order in which they were created. Expand source codedef constraints(self) -> "std::vector< operations_research::MPConstraint * > const &": r""" Returns the array of constraints handled by the MPSolver. They are listed in the order in which they were created. """ return _pywraplp.Solver_constraints(self)
- def iterations(self) -> 'int64'
- 
Returns the number of simplex iterations. Expand source codedef iterations(self) -> "int64": r""" Returns the number of simplex iterations.""" return _pywraplp.Solver_iterations(self)
- def nodes(self) -> 'int64'
- 
Returns the number of branch-and-bound nodes evaluated during the solve. Only available for discrete problems. Expand source codedef nodes(self) -> "int64": r""" Returns the number of branch-and-bound nodes evaluated during the solve. Only available for discrete problems. """ return _pywraplp.Solver_nodes(self)
- def set_time_limit(self, time_limit_milliseconds: int64) -> 'void'
- 
Expand source codedef set_time_limit(self, time_limit_milliseconds: "int64") -> "void": return _pywraplp.Solver_set_time_limit(self, time_limit_milliseconds)
- def variables(self) -> 'std::vector< operations_research::MPVariable * > const &'
- 
Returns the array of variables handled by the MPSolver. (They are listed in the order in which they were created.) Expand source codedef variables(self) -> "std::vector< operations_research::MPVariable * > const &": r""" Returns the array of variables handled by the MPSolver. (They are listed in the order in which they were created.) """ return _pywraplp.Solver_variables(self)
- def wall_time(self) -> 'int64'
- 
Expand source codedef wall_time(self) -> "int64": return _pywraplp.Solver_wall_time(self)
 AddBoolVarClearComputeConstraintActivitiesComputeExactConditionNumberConstraintEnableOutputExportModelAsLpFormatExportModelAsMpsFormatExportModelToProtoFillSolutionResponseProtoIntVarInterruptSolveIterationsLoadModelFromProtoLoadSolutionFromProtoLookupConstraintLookupVariableMaximizeMinimizeNextSolutionNumConstraintsNumVarNumVariablesObjectiveRowConstraintSetHintSetNumThreadsSetSolverSpecificParametersAsStringSetTimeLimitSolveSumSuppressOutputVarVerifySolutionWallTimeconstraintsiterationsnodesset_time_limitvariableswall_time
- class Variable (*args, **kwargs)
- 
The class for variables of a Mathematical Programming (MP) model. Expand source codeclass Variable(object): r""" The class for variables of a Mathematical Programming (MP) model.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") def name(self) -> "std::string const &": r""" Returns the name of the variable.""" return _pywraplp.Variable_name(self) def SetInteger(self, integer: "bool") -> "void": r""" Sets the integrality requirement of the variable.""" return _pywraplp.Variable_SetInteger(self, integer) def integer(self) -> "bool": r""" Returns the integrality requirement of the variable.""" return _pywraplp.Variable_integer(self) def solution_value(self) -> "double": r""" Returns the value of the variable in the current solution. If the variable is integer, then the value will always be an integer (the underlying solver handles floating-point values only, but this function automatically rounds it to the nearest integer; see: man 3 round). """ return _pywraplp.Variable_solution_value(self) def index(self) -> "int": r""" Returns the index of the variable in the MPSolver::variables_.""" return _pywraplp.Variable_index(self) def lb(self) -> "double": r""" Returns the lower bound.""" return _pywraplp.Variable_lb(self) def ub(self) -> "double": r""" Returns the upper bound.""" return _pywraplp.Variable_ub(self) def SetBounds(self, lb: "double", ub: "double") -> "void": r""" Sets both the lower and upper bounds.""" return _pywraplp.Variable_SetBounds(self, lb, ub) def reduced_cost(self) -> "double": r""" Advanced usage: returns the reduced cost of the variable in the current solution (only available for continuous problems). """ return _pywraplp.Variable_reduced_cost(self) def basis_status(self) -> "operations_research::MPSolver::BasisStatus": r""" Advanced usage: returns the basis status of the variable in the current solution (only available for continuous problems). See also: MPSolver::BasisStatus. """ return _pywraplp.Variable_basis_status(self) def __str__(self) -> "std::string": return _pywraplp.Variable___str__(self) def __repr__(self) -> "std::string": return _pywraplp.Variable___repr__(self) def __getattr__(self, name): return getattr(VariableExpr(self), name) def SolutionValue(self) -> "double": return _pywraplp.Variable_SolutionValue(self) def Integer(self) -> "bool": return _pywraplp.Variable_Integer(self) def Lb(self) -> "double": return _pywraplp.Variable_Lb(self) def Ub(self) -> "double": return _pywraplp.Variable_Ub(self) def SetLb(self, x: "double") -> "void": return _pywraplp.Variable_SetLb(self, x) def SetUb(self, x: "double") -> "void": return _pywraplp.Variable_SetUb(self, x) def ReducedCost(self) -> "double": return _pywraplp.Variable_ReducedCost(self) __swig_destroy__ = _pywraplp.delete_VariableMethods- def Integer(self) -> bool
- 
Expand source codedef Integer(self) -> "bool": return _pywraplp.Variable_Integer(self)
- def Lb(self) -> 'double'
- 
Expand source codedef Lb(self) -> "double": return _pywraplp.Variable_Lb(self)
- def ReducedCost(self) -> 'double'
- 
Expand source codedef ReducedCost(self) -> "double": return _pywraplp.Variable_ReducedCost(self)
- def SetBounds(self, lb: double, ub: double) -> 'void'
- 
Sets both the lower and upper bounds. Expand source codedef SetBounds(self, lb: "double", ub: "double") -> "void": r""" Sets both the lower and upper bounds.""" return _pywraplp.Variable_SetBounds(self, lb, ub)
- def SetInteger(self, integer: bool) -> 'void'
- 
Sets the integrality requirement of the variable. Expand source codedef SetInteger(self, integer: "bool") -> "void": r""" Sets the integrality requirement of the variable.""" return _pywraplp.Variable_SetInteger(self, integer)
- def SetLb(self, x: double) -> 'void'
- 
Expand source codedef SetLb(self, x: "double") -> "void": return _pywraplp.Variable_SetLb(self, x)
- def SetUb(self, x: double) -> 'void'
- 
Expand source codedef SetUb(self, x: "double") -> "void": return _pywraplp.Variable_SetUb(self, x)
- def SolutionValue(self) -> 'double'
- 
Expand source codedef SolutionValue(self) -> "double": return _pywraplp.Variable_SolutionValue(self)
- def Ub(self) -> 'double'
- 
Expand source codedef Ub(self) -> "double": return _pywraplp.Variable_Ub(self)
- def basis_status(self) -> 'operations_research::MPSolver::BasisStatus'
- 
Advanced usage: returns the basis status of the variable in the current solution (only available for continuous problems). See also: MPSolver::BasisStatus. Expand source codedef basis_status(self) -> "operations_research::MPSolver::BasisStatus": r""" Advanced usage: returns the basis status of the variable in the current solution (only available for continuous problems). See also: MPSolver::BasisStatus. """ return _pywraplp.Variable_basis_status(self)
- def index(self) -> int
- 
Returns the index of the variable in the MPSolver::variables_. Expand source codedef index(self) -> "int": r""" Returns the index of the variable in the MPSolver::variables_.""" return _pywraplp.Variable_index(self)
- def integer(self) -> bool
- 
Returns the integrality requirement of the variable. Expand source codedef integer(self) -> "bool": r""" Returns the integrality requirement of the variable.""" return _pywraplp.Variable_integer(self)
- def lb(self) -> 'double'
- 
Returns the lower bound. Expand source codedef lb(self) -> "double": r""" Returns the lower bound.""" return _pywraplp.Variable_lb(self)
- def name(self) -> 'std::string const &'
- 
Returns the name of the variable. Expand source codedef name(self) -> "std::string const &": r""" Returns the name of the variable.""" return _pywraplp.Variable_name(self)
- def reduced_cost(self) -> 'double'
- 
Advanced usage: returns the reduced cost of the variable in the current solution (only available for continuous problems). Expand source codedef reduced_cost(self) -> "double": r""" Advanced usage: returns the reduced cost of the variable in the current solution (only available for continuous problems). """ return _pywraplp.Variable_reduced_cost(self)
- def solution_value(self) -> 'double'
- 
Returns the value of the variable in the current solution. If the variable is integer, then the value will always be an integer (the underlying solver handles floating-point values only, but this function automatically rounds it to the nearest integer; see: man 3 round). Expand source codedef solution_value(self) -> "double": r""" Returns the value of the variable in the current solution. If the variable is integer, then the value will always be an integer (the underlying solver handles floating-point values only, but this function automatically rounds it to the nearest integer; see: man 3 round). """ return _pywraplp.Variable_solution_value(self)
- def ub(self) -> 'double'
- 
Returns the upper bound. Expand source codedef ub(self) -> "double": r""" Returns the upper bound.""" return _pywraplp.Variable_ub(self)
 IntegerLbReducedCostSetBoundsSetIntegerSetLbSetUbSolutionValueUbbasis_statusindexintegerlbnamereduced_costsolution_valueub
