লিনিয়ার রিগ্রেশন কোডল্যাব

1. ভূমিকা

এই কোডল্যাব আপনাকে শেখাবে কিভাবে রৈখিক রিগ্রেশন ব্যবহার করে এমন একটি মডেল তৈরি করতে হয় যা প্রতি ক্লিকের খরচের পূর্বাভাস দেয়।

পূর্বশর্ত

এই কোডল্যাবটি সম্পূর্ণ করতে আপনার প্রয়োজন হবে:

এই কোডল্যাবটি সম্পূর্ণ করতে, একটি মডেল তৈরি করার জন্য আপনার যথেষ্ট উচ্চ মানের প্রচারাভিযান ডেটার প্রয়োজন হবে৷

2. একটি অস্থায়ী টেবিল তৈরি করুন

নিম্নলিখিত ক্যোয়ারী চালান

CREATE TABLE
 linear_regression_example_data
AS(
 WITH all_data AS (
   SELECT
     imp.user_id as user_id,
     ROW_NUMBER() OVER(PARTITION BY imp.user_id) AS rowIdx,
     imp.browser AS browser_name,
     gender_name AS gender_name,
     age_group_name AS age_group_name,
     DATETIME(TIMESTAMP_MICROS(
       imp.query_id.time_usec), "America/Los_Angeles") as impression_time,
     clk.advertiser_click_cost_usd AS label
   FROM adh.google_ads_impressions imp
     INNER JOIN adh.google_ads_clicks clk USING (impression_id)
     LEFT JOIN adh.gender ON demographics.gender = gender_id
     LEFT JOIN adh.age_group ON demographics.age_group = age_group_id
 )
 # Need just one user ID or regression won't work
 SELECT
   label,
   browser_name,
   gender_name,
   age_group_name,
   # Although BQML could divide impression_time into several useful variables on
   # its own, it may attempt to divide it into too many features. As a best
   # practice extract the variables that you think will be most helpful.
   # The output of impression_time is a number, but we care about it as a
   # category, so we cast it to a string.
   CAST(EXTRACT(DAYOFWEEK FROM impression_time) AS STRING) AS day_of_week,
   CAST(EXTRACT(HOUR FROM impression_time) AS STRING) AS hour,
 FROM
   all_data
 WHERE
   rowIdx = 1 # This ensures that there's only 1 row per user.
   AND
   label IS NOT NULL
   AND
   gender_name IS NOT NULL
   AND
   age_group_name IS NOT NULL
);

3. একটি মডেল তৈরি করুন এবং প্রশিক্ষণ দিন

আপনার মডেল তৈরির ধাপগুলি থেকে আপনার টেবিল তৈরির ধাপগুলিকে আলাদা করা একটি সর্বোত্তম অনুশীলন।

পূর্ববর্তী ধাপে আপনার তৈরি করা অস্থায়ী টেবিলে নিম্নলিখিত ক্যোয়ারীটি চালান। শুরু এবং শেষের তারিখগুলি দেওয়ার বিষয়ে চিন্তা করবেন না, কারণ এইগুলি অস্থায়ী টেবিলের ডেটার উপর ভিত্তি করে অনুমান করা হবে৷

CREATE OR REPLACE
MODEL `example_linear`
OPTIONS(
   model_type = 'adh_linear_regression'
)
AS (
   SELECT *
   FROM
       tmp.linear_regression_example_data
);

SELECT * FROM ML.EVALUATE(MODEL `example_linear`)

সারি

মানে_পরম_ত্রুটি

গড়_বর্গীয়_ত্রুটি

গড়_বর্গক্ষেত্র_লগ_ত্রুটি

মধ্যমা_পরম_ত্রুটি

r2_স্কোর

ব্যাখ্যা করা_প্রকরণ

1

0.11102380666874107

০.০১৯৯৩৮৯৭২৪৬১৫৬৯৪৭৬

0.019503393448234131

0.091792024503562136

-9.8205955364568478

-9.7975398794423025

,

1. ভূমিকা

এই কোডল্যাব আপনাকে শেখাবে কিভাবে রৈখিক রিগ্রেশন ব্যবহার করে এমন একটি মডেল তৈরি করতে হয় যা প্রতি ক্লিকের খরচের পূর্বাভাস দেয়।

পূর্বশর্ত

এই কোডল্যাবটি সম্পূর্ণ করতে আপনার প্রয়োজন হবে:

এই কোডল্যাবটি সম্পূর্ণ করতে, একটি মডেল তৈরি করার জন্য আপনার যথেষ্ট উচ্চ মানের প্রচারাভিযান ডেটার প্রয়োজন হবে৷

2. একটি অস্থায়ী টেবিল তৈরি করুন

নিম্নলিখিত ক্যোয়ারী চালান

CREATE TABLE
 linear_regression_example_data
AS(
 WITH all_data AS (
   SELECT
     imp.user_id as user_id,
     ROW_NUMBER() OVER(PARTITION BY imp.user_id) AS rowIdx,
     imp.browser AS browser_name,
     gender_name AS gender_name,
     age_group_name AS age_group_name,
     DATETIME(TIMESTAMP_MICROS(
       imp.query_id.time_usec), "America/Los_Angeles") as impression_time,
     clk.advertiser_click_cost_usd AS label
   FROM adh.google_ads_impressions imp
     INNER JOIN adh.google_ads_clicks clk USING (impression_id)
     LEFT JOIN adh.gender ON demographics.gender = gender_id
     LEFT JOIN adh.age_group ON demographics.age_group = age_group_id
 )
 # Need just one user ID or regression won't work
 SELECT
   label,
   browser_name,
   gender_name,
   age_group_name,
   # Although BQML could divide impression_time into several useful variables on
   # its own, it may attempt to divide it into too many features. As a best
   # practice extract the variables that you think will be most helpful.
   # The output of impression_time is a number, but we care about it as a
   # category, so we cast it to a string.
   CAST(EXTRACT(DAYOFWEEK FROM impression_time) AS STRING) AS day_of_week,
   CAST(EXTRACT(HOUR FROM impression_time) AS STRING) AS hour,
 FROM
   all_data
 WHERE
   rowIdx = 1 # This ensures that there's only 1 row per user.
   AND
   label IS NOT NULL
   AND
   gender_name IS NOT NULL
   AND
   age_group_name IS NOT NULL
);

3. একটি মডেল তৈরি করুন এবং প্রশিক্ষণ দিন

আপনার মডেল তৈরির ধাপগুলি থেকে আপনার টেবিল তৈরির ধাপগুলিকে আলাদা করা একটি সর্বোত্তম অনুশীলন।

পূর্ববর্তী ধাপে আপনার তৈরি করা অস্থায়ী টেবিলে নিম্নলিখিত ক্যোয়ারীটি চালান। শুরু এবং শেষের তারিখগুলি দেওয়ার বিষয়ে চিন্তা করবেন না, কারণ এইগুলি অস্থায়ী টেবিলের ডেটার উপর ভিত্তি করে অনুমান করা হবে৷

CREATE OR REPLACE
MODEL `example_linear`
OPTIONS(
   model_type = 'adh_linear_regression'
)
AS (
   SELECT *
   FROM
       tmp.linear_regression_example_data
);

SELECT * FROM ML.EVALUATE(MODEL `example_linear`)

সারি

মানে_পরম_ত্রুটি

গড়_বর্গীয়_ত্রুটি

গড়_বর্গক্ষেত্র_লগ_ত্রুটি

মধ্যমা_পরম_ত্রুটি

r2_স্কোর

ব্যাখ্যা করা_প্রকরণ

1

0.11102380666874107

০.০১৯৯৩৮৯৭২৪৬১৫৬৯৪৭৬

0.019503393448234131

0.091792024503562136

-9.8205955364568478

-9.7975398794423025

,

1. ভূমিকা

এই কোডল্যাব আপনাকে শেখাবে কিভাবে রৈখিক রিগ্রেশন ব্যবহার করে এমন একটি মডেল তৈরি করতে হয় যা প্রতি ক্লিকের খরচের পূর্বাভাস দেয়।

পূর্বশর্ত

এই কোডল্যাবটি সম্পূর্ণ করতে আপনার প্রয়োজন হবে:

এই কোডল্যাবটি সম্পূর্ণ করতে, একটি মডেল তৈরি করার জন্য আপনার যথেষ্ট উচ্চ মানের প্রচারাভিযান ডেটার প্রয়োজন হবে৷

2. একটি অস্থায়ী টেবিল তৈরি করুন

নিম্নলিখিত ক্যোয়ারী চালান

CREATE TABLE
 linear_regression_example_data
AS(
 WITH all_data AS (
   SELECT
     imp.user_id as user_id,
     ROW_NUMBER() OVER(PARTITION BY imp.user_id) AS rowIdx,
     imp.browser AS browser_name,
     gender_name AS gender_name,
     age_group_name AS age_group_name,
     DATETIME(TIMESTAMP_MICROS(
       imp.query_id.time_usec), "America/Los_Angeles") as impression_time,
     clk.advertiser_click_cost_usd AS label
   FROM adh.google_ads_impressions imp
     INNER JOIN adh.google_ads_clicks clk USING (impression_id)
     LEFT JOIN adh.gender ON demographics.gender = gender_id
     LEFT JOIN adh.age_group ON demographics.age_group = age_group_id
 )
 # Need just one user ID or regression won't work
 SELECT
   label,
   browser_name,
   gender_name,
   age_group_name,
   # Although BQML could divide impression_time into several useful variables on
   # its own, it may attempt to divide it into too many features. As a best
   # practice extract the variables that you think will be most helpful.
   # The output of impression_time is a number, but we care about it as a
   # category, so we cast it to a string.
   CAST(EXTRACT(DAYOFWEEK FROM impression_time) AS STRING) AS day_of_week,
   CAST(EXTRACT(HOUR FROM impression_time) AS STRING) AS hour,
 FROM
   all_data
 WHERE
   rowIdx = 1 # This ensures that there's only 1 row per user.
   AND
   label IS NOT NULL
   AND
   gender_name IS NOT NULL
   AND
   age_group_name IS NOT NULL
);

3. একটি মডেল তৈরি করুন এবং প্রশিক্ষণ দিন

আপনার মডেল তৈরির ধাপগুলি থেকে আপনার টেবিল তৈরির ধাপগুলিকে আলাদা করা একটি সর্বোত্তম অনুশীলন।

পূর্ববর্তী ধাপে আপনার তৈরি করা অস্থায়ী টেবিলে নিম্নলিখিত ক্যোয়ারীটি চালান। শুরু এবং শেষের তারিখগুলি দেওয়ার বিষয়ে চিন্তা করবেন না, কারণ এইগুলি অস্থায়ী টেবিলের ডেটার উপর ভিত্তি করে অনুমান করা হবে৷

CREATE OR REPLACE
MODEL `example_linear`
OPTIONS(
   model_type = 'adh_linear_regression'
)
AS (
   SELECT *
   FROM
       tmp.linear_regression_example_data
);

SELECT * FROM ML.EVALUATE(MODEL `example_linear`)

সারি

মানে_পরম_ত্রুটি

গড়_বর্গীয়_ত্রুটি

গড়_বর্গক্ষেত্র_লগ_ত্রুটি

মধ্যমা_পরম_ত্রুটি

r2_স্কোর

ব্যাখ্যা করা_প্রকরণ

1

0.11102380666874107

০.০১৯৯৩৮৯৭২৪৬১৫৬৯৪৭৬

0.019503393448234131

0.091792024503562136

-9.8205955364568478

-9.7975398794423025

,

1. ভূমিকা

এই কোডল্যাব আপনাকে শেখাবে কিভাবে রৈখিক রিগ্রেশন ব্যবহার করে এমন একটি মডেল তৈরি করতে হয় যা প্রতি ক্লিকের খরচের পূর্বাভাস দেয়।

পূর্বশর্ত

এই কোডল্যাবটি সম্পূর্ণ করতে আপনার প্রয়োজন হবে:

এই কোডল্যাবটি সম্পূর্ণ করতে, একটি মডেল তৈরি করার জন্য আপনার যথেষ্ট উচ্চ মানের প্রচারাভিযান ডেটার প্রয়োজন হবে৷

2. একটি অস্থায়ী টেবিল তৈরি করুন

নিম্নলিখিত ক্যোয়ারী চালান

CREATE TABLE
 linear_regression_example_data
AS(
 WITH all_data AS (
   SELECT
     imp.user_id as user_id,
     ROW_NUMBER() OVER(PARTITION BY imp.user_id) AS rowIdx,
     imp.browser AS browser_name,
     gender_name AS gender_name,
     age_group_name AS age_group_name,
     DATETIME(TIMESTAMP_MICROS(
       imp.query_id.time_usec), "America/Los_Angeles") as impression_time,
     clk.advertiser_click_cost_usd AS label
   FROM adh.google_ads_impressions imp
     INNER JOIN adh.google_ads_clicks clk USING (impression_id)
     LEFT JOIN adh.gender ON demographics.gender = gender_id
     LEFT JOIN adh.age_group ON demographics.age_group = age_group_id
 )
 # Need just one user ID or regression won't work
 SELECT
   label,
   browser_name,
   gender_name,
   age_group_name,
   # Although BQML could divide impression_time into several useful variables on
   # its own, it may attempt to divide it into too many features. As a best
   # practice extract the variables that you think will be most helpful.
   # The output of impression_time is a number, but we care about it as a
   # category, so we cast it to a string.
   CAST(EXTRACT(DAYOFWEEK FROM impression_time) AS STRING) AS day_of_week,
   CAST(EXTRACT(HOUR FROM impression_time) AS STRING) AS hour,
 FROM
   all_data
 WHERE
   rowIdx = 1 # This ensures that there's only 1 row per user.
   AND
   label IS NOT NULL
   AND
   gender_name IS NOT NULL
   AND
   age_group_name IS NOT NULL
);

3. একটি মডেল তৈরি করুন এবং প্রশিক্ষণ দিন

আপনার মডেল তৈরির ধাপগুলি থেকে আপনার টেবিল তৈরির ধাপগুলিকে আলাদা করা একটি সর্বোত্তম অনুশীলন।

পূর্ববর্তী ধাপে আপনার তৈরি করা অস্থায়ী টেবিলে নিম্নলিখিত ক্যোয়ারীটি চালান। শুরু এবং শেষের তারিখগুলি দেওয়ার বিষয়ে চিন্তা করবেন না, কারণ এইগুলি অস্থায়ী টেবিলের ডেটার উপর ভিত্তি করে অনুমান করা হবে৷

CREATE OR REPLACE
MODEL `example_linear`
OPTIONS(
   model_type = 'adh_linear_regression'
)
AS (
   SELECT *
   FROM
       tmp.linear_regression_example_data
);

SELECT * FROM ML.EVALUATE(MODEL `example_linear`)

সারি

মানে_পরম_ত্রুটি

গড়_বর্গীয়_ত্রুটি

গড়_বর্গক্ষেত্র_লগ_ত্রুটি

মধ্যমা_পরম_ত্রুটি

r2_স্কোর

ব্যাখ্যা করা_প্রকরণ

1

0.11102380666874107

০.০১৯৯৩৮৯৭২৪৬১৫৬৯৪৭৬

0.019503393448234131

0.091792024503562136

-9.8205955364568478

-9.7975398794423025