Você precisa ter acesso a um projeto do Google Cloud com a API BigQuery ativada.
Conclua a seção Antes de começar no Guia de início rápido do BigQuery para criar um novo projeto do Google Cloud ou ativar a API BigQuery em um atual.
Esse conjunto de dados contém dados ofuscados que emulam um conjunto de dados de uma implementação real do Google Analytics 4. Alguns campos contêm valores de marcador, incluindo <Other>, NULL e ''. Devido à ofuscação, a consistência interna do conjunto de dados pode ter limitações.
O Console do Cloud oferece uma interface para consultar tabelas. É possível usar a interface do BigQuery para acessar o conjunto de dados ga4_obfuscated_sample_ecommerce.
Se a guia Editor não estiver visível, clique em add_boxCriar nova consulta.
Copie e cole a consulta a seguir no campo "Editor". Ela mostrará o número de eventos, usuários e dias únicos no conjunto de dados.
SELECT
COUNT(*) AS event_count,
COUNT(DISTINCT user_pseudo_id) AS user_count,
COUNT(DISTINCT event_date) AS day_count
FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
Para consultas válidas, uma marca de seleção será exibida ao lado dos volumes de dados que a consulta processará. Essa métrica ajuda a determinar o custo de execução da consulta.
Clique em Executar. A página de resultados será exibida abaixo da janela de consulta.
[null,null,["Última atualização 2024-04-22 UTC."],[[["\u003cp\u003eThe \u003ccode\u003ega4_obfuscated_sample_ecommerce\u003c/code\u003e dataset provides obfuscated Google Analytics event export data for the Google Merchandise Store from November 1, 2020 to January 31, 2021.\u003c/p\u003e\n"],["\u003cp\u003eThis public dataset can be accessed and queried using BigQuery, allowing users to explore and analyze ecommerce website behavior.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset uses placeholder values for certain fields due to obfuscation, and its internal consistency may be limited.\u003c/p\u003e\n"],["\u003cp\u003eUsers can explore the dataset through the BigQuery UI, sample queries, and advanced analytical tools like Connected Sheets and Looker Studio.\u003c/p\u003e\n"],["\u003cp\u003eBefore using the dataset, ensure you have a Google Cloud project with BigQuery API enabled and review the limitations of the dataset.\u003c/p\u003e\n"]]],["The core content describes the `ga4_obfuscated_sample_ecommerce` dataset, a sample of Google Merchandise Store's obfuscated ecommerce data from November 2020 to January 2021. Access requires a Google Cloud project with BigQuery API enabled. Users can query the dataset using the BigQuery UI by composing and running queries in the editor. A sample query to count unique events, users, and days is provided. Users can then explore further by using advanced queries, schema, and other tools.\n"],null,["# BigQuery sample dataset for Google Analytics ecommerce web implementation\n\n[Google Merchandise Store](https://shop.googlemerchandisestore.com) is an online store that sells Google-branded\nmerchandise. The site uses Google Analytics's standard web [ecommerce\nimplementation](/tag-manager/ecommerce-ga4) along with [enhanced measurement](https://support.google.com/analytics/answer/9216061). The\n[`ga4_obfuscated_sample_ecommerce` dataset](https://console.cloud.google.com/bigquery?p=bigquery-public-data&d=ga4_obfuscated_sample_ecommerce&t=events_20210131&page=table) available through the BigQuery\nPublic Datasets program contains a sample of obfuscated BigQuery event export\ndata for three months from 2020-11-01 to 2021-01-31.\n\nPre-requisite\n-------------\n\n- You need access to a Google Cloud project with BigQuery API enabled.\n Complete the *Before you begin* section in the [BigQuery Quickstart guide](https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui#before-you-begin) to\n create a new Google Cloud project or to enable the BigQuery API in an\n existing one.\n\n- You can use the [BigQuery Sandbox mode](https://cloud.google.com/bigquery/docs/sandbox) for free with certain limitations.\n The [Free usage tier](https://cloud.google.com/bigquery/pricing#free-tier) should be sufficient to explore this dataset and run the\n sample queries. You can optionally [Enable Billing](https://cloud.google.com/billing/docs/how-to/modify-project) to go beyond the Free\n usage tier.\n\nLimitations\n-----------\n\nThis dataset contains obfuscated data that emulates what a real world dataset\nwould look like from an actual Google Analytics implementation. Certain fields\nwill contain placeholder values including `\u003cOther\u003e`, `NULL`, and `''`. Due to\nobfuscation, internal consistency of the dataset might be somewhat limited.\n\nThe dataset can not be compared to the [Google Analytics Demo Account](https://support.google.com/analytics/answer/6367342) for\nGoogle Merchandise store as the data is different.\n\nUsing the dataset\n-----------------\n\n1. The Cloud Console provides an interface to query tables. You can use the\n [BigQuery UI](https://console.cloud.google.com/bigquery?p=bigquery-public-data&d=ga4_obfuscated_sample_ecommerce&t=events_20210131&page=table) to access the `ga4_obfuscated_sample_ecommerce` dataset.\n\n2. If the **Editor** tab isn't visible, then click add_box **Compose new query**.\n\n3. Copy and paste the following query into the Editor field. This query will\n show to number of unique events, users, and days in the dataset.\n\n SELECT\n COUNT(*) AS event_count,\n COUNT(DISTINCT user_pseudo_id) AS user_count,\n COUNT(DISTINCT event_date) AS day_count\n FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n\n4. For valid queries, a check mark will appear along with the amount of data\n that the query will process. This metric helps you determine the cost of\n running the query. \n\n \u003cbr /\u003e\n\n5. Click **Run** . The query results page will appear below the query window. \n\n \u003cbr /\u003e\n\n6. Try running some [sample queries](/analytics/bigquery/basic-queries).\n\nNext Steps\n----------\n\n- Learn more about the schema for [Google Analytics BigQuery event export\n schema](/analytics/bigquery/event-schema).\n\n- Run some of the [advanced queries](/analytics/bigquery/advanced-queries) on the dataset.\n\n- If you are not familiar with BigQuery, explore [BigQuery How-to Guides](https://cloud.google.com/bigquery/docs/how-to).\n\n- Use [Connected Sheets](https://cloud.google.com/bigquery/docs/connected-sheets) to analyze the dataset from Google Sheets\n spreadsheet.\n\n- [Visualize](https://cloud.google.com/bigquery/docs/visualize-looker-studio) the dataset using [Looker Studio](https://lookerstudio.google.com/)."]]