결정 포레스트

결정 포레스트는 여러 결정 트리로 구성된 모델을 설명하는 일반적인 용어입니다. 결정 포레스트의 예측은 결정 트리의 예측을 집계한 것입니다. 이 집계의 구현은 결정 포레스트 학습에 사용된 알고리즘에 따라 다릅니다. 예를 들어 다중 클래스 분류 랜덤 포레스트 (결정 포레스트의 한 유형)에서 각 트리는 단일 클래스에 투표하며 랜덤 포레스트 예측은 가장 많이 표시되는 클래스입니다. 이진 분류 그래디언트 부스트 트리 (GBT)(다른 유형의 결정 포레스트)에서 각 트리는 로짓 (부동 소수점 값)을 출력하고 그래디언트 부스트 트리 예측은 이러한 값의 합계에 활성화 함수 (예: 시그모이드)를 적용한 값입니다.

다음 두 챕터에서는 이러한 두 가지 의사 결정 열림 알고리즘을 자세히 설명합니다.