决策树:检查您的理解情况
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
本页面将为您提供一系列多选题练习,以便您巩固“过拟合和剪枝”单元中所学内容。
问题 1
增加决策树中每个叶子的最小示例数会产生哪两种可能的影响?
问题 2
哪些操作可以减少已知过度拟合的模型中的过度拟合(例如,通过在测试数据集上评估模型)。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-02-25。
[null,null,["最后更新时间 (UTC):2025-02-25。"],[[["\u003cp\u003eThis page provides multiple-choice exercises focused on overfitting and pruning in decision trees.\u003c/p\u003e\n"],["\u003cp\u003eThe exercises cover topics like the impact of leaf size on tree structure and techniques to reduce overfitting in decision tree models.\u003c/p\u003e\n"]]],[],null,["# Decision trees: Check your understanding\n\n\u003cbr /\u003e\n\nThis page challenges you to answer a series of multiple choice exercises\nabout the material discussed in the \"Overfitting and pruning\" unit.\n\nQuestion 1\n----------\n\nWhat are the two potential effects of increasing the minimum number of examples per leaf in a decision tree? \nThe size of the decision tree increases. \nThe size of the decision tree decreases. \nWell done. \nThe structure of the decision tree can completely change. \nThe structure of the decision tree remains mostly unchanged. \nWell done.\n\nQuestion 2\n----------\n\nWhat operations can reduce overfitting in a model known to be overfitted (for example, by evaluating it on a test dataset). \nIncrease the maximum depth. \nDecrease the maximum depth. \nIncrease the minimum number of observations in the leaves. \nDecrease the minimum number of observations in the leaves. \nIncrease the minimum gain of a new node. \nDecrease the minimum gain of a new node."]]