با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
جنگل های تصمیم گیری مزایای زیر را ارائه می دهند:
پیکربندی آنها راحت تر از شبکه های عصبی است. جنگلهای تصمیمگیری فراپارامترهای کمتری دارند. علاوه بر این، فراپارامترها در جنگل های تصمیم گیری پیش فرض های خوبی را ارائه می دهند.
آنها به طور بومی ویژگی های عددی، دسته بندی و گمشده را کنترل می کنند . این بدان معنی است که می توانید کدهای پیش پردازشی بسیار کمتری نسبت به زمانی که از شبکه عصبی استفاده می کنید بنویسید، در زمان شما صرفه جویی می کند و منابع خطا را کاهش می دهد.
آنها اغلب نتایج خوبی را در خارج از جعبه ارائه می دهند، در برابر داده های پر سر و صدا قوی هستند و ویژگی های قابل تفسیر دارند.
آنها بر روی مجموعه داده های کوچک (کمتر از 1 میلیون نمونه) بسیار سریعتر از شبکه های عصبی استنباط می کنند و آموزش می بینند.
جنگل های تصمیم گیری نتایج بسیار خوبی در مسابقات یادگیری ماشین ایجاد می کنند و به شدت در بسیاری از کارهای صنعتی استفاده می شوند.
این دوره به معرفی درختان تصمیم و جنگل های تصمیم می پردازد. جنگلهای تصمیم خانوادهای از الگوریتمهای یادگیری ماشینی قابل تفسیر هستند که با دادههای جدولی برتری دارند. جنگل های تصمیم گیری می توانند انجام دهند:
این دوره توضیح می دهد که چگونه جنگل های تصمیم گیری بدون تمرکز بر هیچ کتابخانه خاصی کار می کنند. با این حال، در طول دوره، جعبههای متن نمونههای کدی را نشان میدهند که به کتابخانه جنگل تصمیم YDF متکی هستند، اما میتوانند به کتابخانههای جنگل تصمیم دیگر تبدیل شوند.
پیش نیازها
این دوره فرض می کند که شما دوره های زیر را گذرانده اید یا دانش معادل آن را دارید:
تاریخ آخرین بهروزرسانی 2025-02-25 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-02-25 بهوقت ساعت هماهنگ جهانی."],[[["\u003cp\u003eDecision forests are interpretable machine learning algorithms that work well with tabular data for tasks like classification, regression, and ranking.\u003c/p\u003e\n"],["\u003cp\u003eDecision forests offer advantages such as easy configuration, native handling of various data types, robustness to noise, and fast inference/training on smaller datasets.\u003c/p\u003e\n"],["\u003cp\u003eThis course provides a comprehensive understanding of decision trees and forests, including how they make predictions, different types, performance considerations, and effective usage strategies.\u003c/p\u003e\n"],["\u003cp\u003eThe course uses YDF library code examples to demonstrate concepts, but the knowledge is transferable to other decision forest libraries.\u003c/p\u003e\n"],["\u003cp\u003eBasic machine learning knowledge and familiarity with data preprocessing are prerequisites for this course.\u003c/p\u003e\n"]]],[],null,["# Introduction\n\n\u003cbr /\u003e\n\n| **Estimated Course Time:** 2.5 hours\n\nDecision forests provide the following benefits:\n\n- They are **easier to configure** than neural networks. Decision forests have **fewer hyperparameters** ; furthermore, the hyperparameters in decision forests provide **good defaults**.\n- They **natively handle** numeric, categorical, and missing features. This means you can write far less preprocessing code than when using a neural network, saving you time and reducing sources for error.\n- They often give **good results out of the box**, are robust to noisy data, and have interpretable properties.\n- They infer and train on small datasets (\\\u003c 1M examples) **much faster** than neural networks.\n\nDecision forests produce great results in machine learning competitions, and\nare heavily used in many industrial tasks.\n\nThis course introduces decision trees and decision forests.\nDecision forests are a family of\n[interpretable](/machine-learning/glossary#interpretability) machine learning\nalgorithms that excel with tabular data.\nDecision forests can perform:\n\n- [Classification](https://developers.google.com/machine-learning/glossary/#classification-model)\n- [Regression](https://developers.google.com/machine-learning/glossary/#regression-model)\n- [Ranking](https://developers.google.com/machine-learning/glossary/#ranking)\n- [Anomaly detection](https://developers.google.com/machine-learning/glossary#anomaly-detection)\n- [Uplift modeling](https://developers.google.com/machine-learning/glossary/#uplift-modeling).\n\n| **Learning Objectives:**\n|\n| - Explain decision trees and decision forests.\n| - Determine how decision trees and decision forests make predictions.\n| - Understand how different types of decision forests, such as random forests and gradient boosted trees.\n| - Explain when decision forests perform well, and what their limitations are.\n- Develop a sense of how to use decision forests effectively. \nYDF Code\nThis course explains how decision forests work without focusing on any specific libraries. However, throughout the course, text boxes showcase code examples that rely on the [YDF](https://ydf.readthedocs.io) decision forest library, but can be be converted to other decision forest libraries.\n\nPrerequisites\n-------------\n\nThis course assumes you have completed the following courses or have equivalent\nknowledge:\n\n- [Machine Learning Crash Course](/machine-learning/crash-course)\n- [Machine Learning Problem Framing](/machine-learning/problem-framing)\n- [Data Prep and Feature Engineering](/machine-learning/data-prep)\n\n*Happy Learning!*"]]