과정 요약 및 다음 단계
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
다음 사항을 정확히 이해하고 있는지 확인해 보세요.
- 생성형 모델과 판별형 모델의 차이를 이해합니다.
- GAN이 해결할 수 있는 문제를 식별합니다.
- GAN 시스템에서 생성기와 분류자의 역할을 이해합니다.
- 일반적인 GAN 손실 함수의 장점과 단점을 이해합니다.
- GAN 학습과 관련된 일반적인 문제의 해결 방법을 파악합니다.
- TF GAN 라이브러리를 사용하여 GAN을 만듭니다.
다음 단계
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-02-26(UTC)
[null,null,["최종 업데이트: 2025-02-26(UTC)"],[[["\u003cp\u003eThis webpage focuses on providing an understanding of Generative Adversarial Networks (GANs), including their applications, architecture, and training challenges.\u003c/p\u003e\n"],["\u003cp\u003eReaders will learn to differentiate between generative and discriminative models, identify problems suited for GANs, and grasp the functions of the generator and discriminator components.\u003c/p\u003e\n"],["\u003cp\u003eThe content covers various GAN loss functions with their pros and cons, along with strategies to address typical GAN training issues.\u003c/p\u003e\n"],["\u003cp\u003ePractical application is emphasized by guiding readers to use the TensorFlow GAN library for GAN creation.\u003c/p\u003e\n"],["\u003cp\u003eFurther exploration is encouraged through links to more TensorFlow GAN examples for continued learning and experimentation.\u003c/p\u003e\n"]]],[],null,["# Course Summary and Next Steps\n\n\u003cbr /\u003e\n\nYou should now be able to:\n\n- Understand the difference between generative and discriminative models.\n- Identify problems that GANs can solve.\n- Understand the roles of the generator and discriminator in a GAN system.\n- Understand the advantages and disadvantages of common GAN loss functions.\n- Identify possible solutions to common problems with GAN training.\n- Use the TF GAN library to make a GAN.\n\nWhat's Next\n-----------\n\n- Browse [more TF-GAN\n examples](https://github.com/tensorflow/gan/tree/master/tensorflow_gan/examples)."]]