如果資料集過大,可能不適用於分配給程序的記憶體。在
我們設定了管道,並將整個資料集放入其中
進入記憶體、準備資料,然後將工作組傳遞至訓練的模型
函式。不過,Keras 會提供替代的訓練函式
(fit_generator)。
能分批提取資料這樣一來,我們就能將轉換套用到
將資料管道轉移到資料的一小部分 (batch_size 的倍數)。
在實驗期間,我們針對像
DBPedia、Amazon 評論、Ag 最新消息和 Yelp 評論。
下列程式碼顯示如何產生資料批次並提供給
fit_generator。
def _data_generator(x, y, num_features, batch_size):
"""Generates batches of vectorized texts for training/validation.
# Arguments
x: np.matrix, feature matrix.
y: np.ndarray, labels.
num_features: int, number of features.
batch_size: int, number of samples per batch.
# Returns
Yields feature and label data in batches.
"""
num_samples = x.shape[0]
num_batches = num_samples // batch_size
if num_samples % batch_size:
num_batches += 1
while 1:
for i in range(num_batches):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
if end_idx > num_samples:
end_idx = num_samples
x_batch = x[start_idx:end_idx]
y_batch = y[start_idx:end_idx]
yield x_batch, y_batch
# Create training and validation generators.
training_generator = _data_generator(
x_train, train_labels, num_features, batch_size)
validation_generator = _data_generator(
x_val, val_labels, num_features, batch_size)
# Get number of training steps. This indicated the number of steps it takes
# to cover all samples in one epoch.
steps_per_epoch = x_train.shape[0] // batch_size
if x_train.shape[0] % batch_size:
steps_per_epoch += 1
# Get number of validation steps.
validation_steps = x_val.shape[0] // batch_size
if x_val.shape[0] % batch_size:
validation_steps += 1
# Train and validate model.
history = model.fit_generator(
generator=training_generator,
steps_per_epoch=steps_per_epoch,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks,
epochs=epochs,
verbose=2) # Logs once per epoch.