非常大的数据集可能容纳不下分配给进程的内存。在
我们已经设置了一条流水线,在其中引入整个数据集
准备数据,然后将工作集传递给训练任务,
函数。不过,Keras 提供了一个
(fit_generator)
用于批量拉取数据的工具这样,我们就可以将转换应用于
将数据流水线发送到数据的一小部分(batch_size 的倍数)。
在实验期间,我们对数据集(例如
DBPedia、Amazon 评价、Ag 新闻和 Yelp 评价。
以下代码说明了如何生成数据批次并将其馈送给
fit_generator。
def _data_generator(x, y, num_features, batch_size):
"""Generates batches of vectorized texts for training/validation.
# Arguments
x: np.matrix, feature matrix.
y: np.ndarray, labels.
num_features: int, number of features.
batch_size: int, number of samples per batch.
# Returns
Yields feature and label data in batches.
"""
num_samples = x.shape[0]
num_batches = num_samples // batch_size
if num_samples % batch_size:
num_batches += 1
while 1:
for i in range(num_batches):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
if end_idx > num_samples:
end_idx = num_samples
x_batch = x[start_idx:end_idx]
y_batch = y[start_idx:end_idx]
yield x_batch, y_batch
# Create training and validation generators.
training_generator = _data_generator(
x_train, train_labels, num_features, batch_size)
validation_generator = _data_generator(
x_val, val_labels, num_features, batch_size)
# Get number of training steps. This indicated the number of steps it takes
# to cover all samples in one epoch.
steps_per_epoch = x_train.shape[0] // batch_size
if x_train.shape[0] % batch_size:
steps_per_epoch += 1
# Get number of validation steps.
validation_steps = x_val.shape[0] // batch_size
if x_val.shape[0] % batch_size:
validation_steps += 1
# Train and validate model.
history = model.fit_generator(
generator=training_generator,
steps_per_epoch=steps_per_epoch,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks,
epochs=epochs,
verbose=2) # Logs once per epoch.