부록: 일괄 학습
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
데이터 세트가 너무 크면 프로세스에 할당된 메모리에 맞지 않을 수 있습니다.
전체 데이터 세트를 가져오는 파이프라인을 설정했습니다.
데이터를 준비하고 작업 세트를 학습에 전달
함수를 사용하세요. 대신 Keras는 대체 학습 함수를 제공합니다.
(fit_generator
개)
일괄로 데이터를 가져옵니다. 이를 통해 모델 학습에 변환을
데이터 파이프라인을 데이터의 작은 부분 (batch_size
의 배수)으로만 연결합니다.
실험을 진행하는 동안 다음과 같은 데이터 세트에 일괄 처리 (GitHub 코드)를 사용했습니다.
DBPedia, Amazon reviews, Ag news, Yelp 리뷰
다음 코드는 데이터 배치를 생성하여
fit_generator
def _data_generator(x, y, num_features, batch_size):
"""Generates batches of vectorized texts for training/validation.
# Arguments
x: np.matrix, feature matrix.
y: np.ndarray, labels.
num_features: int, number of features.
batch_size: int, number of samples per batch.
# Returns
Yields feature and label data in batches.
"""
num_samples = x.shape[0]
num_batches = num_samples // batch_size
if num_samples % batch_size:
num_batches += 1
while 1:
for i in range(num_batches):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
if end_idx > num_samples:
end_idx = num_samples
x_batch = x[start_idx:end_idx]
y_batch = y[start_idx:end_idx]
yield x_batch, y_batch
# Create training and validation generators.
training_generator = _data_generator(
x_train, train_labels, num_features, batch_size)
validation_generator = _data_generator(
x_val, val_labels, num_features, batch_size)
# Get number of training steps. This indicated the number of steps it takes
# to cover all samples in one epoch.
steps_per_epoch = x_train.shape[0] // batch_size
if x_train.shape[0] % batch_size:
steps_per_epoch += 1
# Get number of validation steps.
validation_steps = x_val.shape[0] // batch_size
if x_val.shape[0] % batch_size:
validation_steps += 1
# Train and validate model.
history = model.fit_generator(
generator=training_generator,
steps_per_epoch=steps_per_epoch,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=callbacks,
epochs=epochs,
verbose=2) # Logs once per epoch.
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-27(UTC)
[null,null,["최종 업데이트: 2025-07-27(UTC)"],[[["\u003cp\u003eKeras' \u003ccode\u003efit_generator\u003c/code\u003e function enables training on very large datasets that exceed memory capacity by processing data in batches.\u003c/p\u003e\n"],["\u003cp\u003eBatching applies data transformations to smaller portions of the dataset, improving efficiency for large datasets like DBPedia, Amazon reviews, Ag news, and Yelp reviews.\u003c/p\u003e\n"],["\u003cp\u003eThe provided \u003ccode\u003e_data_generator\u003c/code\u003e function demonstrates how to create batches of data for use with \u003ccode\u003efit_generator\u003c/code\u003e, yielding feature and label data in manageable chunks.\u003c/p\u003e\n"],["\u003cp\u003eWhen training with \u003ccode\u003efit_generator\u003c/code\u003e, \u003ccode\u003esteps_per_epoch\u003c/code\u003e and \u003ccode\u003evalidation_steps\u003c/code\u003e need to be defined to specify the number of batches needed to cover the entire training and validation datasets, respectively, for one epoch.\u003c/p\u003e\n"]]],[],null,["# Appendix: Batch Training\n\nVery large datasets may not fit in the memory allocated to your process. In the\nprevious steps, we have set up a pipeline where we bring in the entire dataset\nin to the memory, prepare the data, and pass the working set to the training\nfunction. Instead, Keras provides an alternative training function\n([fit_generator](https://keras.io/models/sequential/#fit_generator))\nthat pulls the data in batches. This allows us to apply the transformations in\nthe data pipeline to only a small (a multiple of `batch_size`) part of the data.\nDuring our experiments, we used batching (code in GitHub) for datasets such as\n*DBPedia* , *Amazon reviews* , *Ag news* , and *Yelp reviews*.\n\nThe following code illustrates how to generate data batches and feed them to\n[fit_generator](https://keras.io/models/sequential/#fit_generator). \n\n```scdoc\ndef _data_generator(x, y, num_features, batch_size):\n \"\"\"Generates batches of vectorized texts for training/validation.\n\n # Arguments\n x: np.matrix, feature matrix.\n y: np.ndarray, labels.\n num_features: int, number of features.\n batch_size: int, number of samples per batch.\n\n # Returns\n Yields feature and label data in batches.\n \"\"\"\n num_samples = x.shape[0]\n num_batches = num_samples // batch_size\n if num_samples % batch_size:\n num_batches += 1\n\n while 1:\n for i in range(num_batches):\n start_idx = i * batch_size\n end_idx = (i + 1) * batch_size\n if end_idx \u003e num_samples:\n end_idx = num_samples\n x_batch = x[start_idx:end_idx]\n y_batch = y[start_idx:end_idx]\n yield x_batch, y_batch\n\n# Create training and validation generators.\ntraining_generator = _data_generator(\n x_train, train_labels, num_features, batch_size)\nvalidation_generator = _data_generator(\n x_val, val_labels, num_features, batch_size)\n\n# Get number of training steps. This indicated the number of steps it takes\n# to cover all samples in one epoch.\nsteps_per_epoch = x_train.shape[0] // batch_size\nif x_train.shape[0] % batch_size:\n steps_per_epoch += 1\n\n# Get number of validation steps.\nvalidation_steps = x_val.shape[0] // batch_size\nif x_val.shape[0] % batch_size:\n validation_steps += 1\n\n# Train and validate model.\nhistory = model.fit_generator(\n generator=training_generator,\n steps_per_epoch=steps_per_epoch,\n validation_data=validation_generator,\n validation_steps=validation_steps,\n callbacks=callbacks,\n epochs=epochs,\n verbose=2) # Logs once per epoch.\n```"]]