Ek: Toplu Eğitim

Çok büyük veri kümeleri, işleminize ayrılan belleğe sığmayabilir. sonraki adımlarda tüm veri kümesini getirdiğimiz bir ardışık düzen oluşturduk. verileri hazırlamak ve çalışma setini eğitim ekibine iletmek işlevini kullanın. Bunun yerine Keras, Arkadaş Bitkiler projesinin (fit_generator) bu çerçeveyi kullanabilirsiniz. Böylece dönüşümleri Ardışık düzeni verilerin yalnızca küçük bir (batch_size veya çoklu) parçasına uygular. Denemelerimiz sırasında, DBPedia, Amazon yorumları, Ag news ve Yelp yorumları.

Aşağıdaki kod, veri gruplarının nasıl oluşturulacağını ve bunların fit_generator

def _data_generator(x, y, num_features, batch_size):
    """Generates batches of vectorized texts for training/validation.

    # Arguments
        x: np.matrix, feature matrix.
        y: np.ndarray, labels.
        num_features: int, number of features.
        batch_size: int, number of samples per batch.

    # Returns
        Yields feature and label data in batches.
    """
    num_samples = x.shape[0]
    num_batches = num_samples // batch_size
    if num_samples % batch_size:
        num_batches += 1

    while 1:
        for i in range(num_batches):
            start_idx = i * batch_size
            end_idx = (i + 1) * batch_size
            if end_idx > num_samples:
                end_idx = num_samples
            x_batch = x[start_idx:end_idx]
            y_batch = y[start_idx:end_idx]
            yield x_batch, y_batch

# Create training and validation generators.
training_generator = _data_generator(
    x_train, train_labels, num_features, batch_size)
validation_generator = _data_generator(
    x_val, val_labels, num_features, batch_size)

# Get number of training steps. This indicated the number of steps it takes
# to cover all samples in one epoch.
steps_per_epoch = x_train.shape[0] // batch_size
if x_train.shape[0] % batch_size:
    steps_per_epoch += 1

# Get number of validation steps.
validation_steps = x_val.shape[0] // batch_size
if x_val.shape[0] % batch_size:
    validation_steps += 1

# Train and validate model.
history = model.fit_generator(
    generator=training_generator,
    steps_per_epoch=steps_per_epoch,
    validation_data=validation_generator,
    validation_steps=validation_steps,
    callbacks=callbacks,
    epochs=epochs,
    verbose=2)  # Logs once per epoch.