ML Practicum: klasyfikacja obrazów
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Ćwiczenie 2. Zapobieganie nadmiernemu dopasowaniu
W tym ćwiczeniu ulepszisz model CNN do klasyfikacji zdjęć kotów i psów, który został utworzony w ĆWICZENIE 1. W tym celu zastosujesz rozszerzanie danych i regularyzację dropout:
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-27 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-27 UTC."],[[["\u003cp\u003eThis exercise focuses on enhancing a Convolutional Neural Network (CNN) model for cat-vs-dog image classification, building upon a previous exercise.\u003c/p\u003e\n"],["\u003cp\u003eThe enhancements involve implementing data augmentation techniques and dropout regularization to mitigate overfitting and improve model generalization.\u003c/p\u003e\n"],["\u003cp\u003eYou will actively apply these techniques in a provided coding exercise using Google Colab.\u003c/p\u003e\n"]]],[],null,["# ML Practicum: Image Classification\n\n\u003cbr /\u003e\n\n### Exercise 2: Preventing Overfitting\n\nIn this exercise, you'll improve the CNN model for cat-vs.-dog\nclassification you built in [Exercise 1](/machine-learning/practica/image-classification/exercise-1) by applying\ndata augmentation and dropout regularization: \n[Launch exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/pc/exercises/image_classification_part2.ipynb?utm_source=practicum-IC&utm_campaign=colab-external&utm_medium=referral&hl=en&utm_content=imageexercise2-colab)"]]