يوضّح المثال التالي كيفية إنشاء مشكلة تحسين رياضي باستخدام MathOpt وإجراء حلّ عن بُعد باستخدام واجهة برمجة التطبيقات OR API. للحصول على مفتاح واجهة برمجة التطبيقات، اتّبِع دليل الإعداد أولاً. تتوفّر MathOpt كجزء من أو-أدوات منذ طرحه 9.9 تفضل بزيارة دليل التثبيت للحصول على المزيد من المعلومات.
# solve_math_opt_model_via_http.py
"""Example of solving a MathOpt model through the OR API.
The model is built using the Python API, and the corresponding proto is
serialized to JSON to make the HTTP request.
"""
from collections.abc import Sequence
from absl import app
from absl import flags
from ortools.math_opt.python import mathopt
from ortools.math_opt.python.ipc import remote_http_solve
_API_KEY = flags.DEFINE_string("api_key", None, "API key for the OR API")
def request_example() -> None:
"""Run example using MathOpt `remote_http_solve` function."""
# Set up the API key.
api_key = _API_KEY.value
if not api_key:
print(
"API key is required. See"
" https://developers.google.com/optimization/service/setup for"
" instructions."
)
return
# Build a MathOpt model
model = mathopt.Model(name="my_model")
x = model.add_binary_variable(name="x")
y = model.add_variable(lb=0.0, ub=2.5, name="y")
model.add_linear_constraint(x + y <= 1.5, name="c")
model.maximize(2 * x + y)
try:
result, logs = remote_http_solve.remote_http_solve(
model,
mathopt.SolverType.GSCIP,
mathopt.SolveParameters(enable_output=True),
api_key=api_key,
)
print("Objective value: ", result.objective_value())
print("x: ", result.variable_values(x))
print("y: ", result.variable_values(y))
print("\n".join(logs))
except remote_http_solve.OptimizationServiceError as err:
print(err)
def main(argv: Sequence[str]) -> None:
del argv # Unused.
request_example()
if __name__ == "__main__":
app.run(main)