課程摘要
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
現在,您應該已經能夠:
- 說明機器學習應用程式的叢集功能。
- 遵循叢集資料的最佳做法和注意事項。
- 採用 k-means 演算法。
- 比較常見的分群方法。
- 視情況選擇監督式或手動相似度評估方式。
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-02-25 (世界標準時間)。
[null,null,["上次更新時間:2025-02-25 (世界標準時間)。"],[[["\u003cp\u003eThis training equips you with the ability to describe clustering in machine learning and understand its practical applications.\u003c/p\u003e\n"],["\u003cp\u003eIt guides you through best practices for data clustering and introduces the k-means algorithm for effective implementation.\u003c/p\u003e\n"],["\u003cp\u003eThe training enables you to compare various clustering methods and make informed choices between supervised and manual similarity measures.\u003c/p\u003e\n"]]],[],null,["# Course summary\n\n\u003cbr /\u003e\n\nYou should now be able to:\n\n- Describe clustering for ML applications.\n- Follow best practices and considerations for clustering data.\n- Employ the k-means algorithm.\n- Compare popular clustering approaches.\n- Choose between supervised and manual similarity measures, as appropriate."]]