Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[[["\u003cp\u003eThis course explores clustering use cases, appropriate similarity measures, and the k-means algorithm for data clustering.\u003c/p\u003e\n"],["\u003cp\u003eLearners will gain skills in evaluating clustering results and applying dimensionality reduction techniques like autoencoders.\u003c/p\u003e\n"],["\u003cp\u003eBasic knowledge of machine learning problem framing and core concepts like numerical data handling and overfitting is required.\u003c/p\u003e\n"]]],[],null,["# Introduction to clustering\n\n\u003cbr /\u003e\n\n| **Estimated course length:** 110 min\n| **Objectives:**\n|\n| - Describe clustering use cases in machine learning applications.\n| - Choose the appropriate similarity measure for an analysis.\n| - Cluster data with the k-means algorithm.\n| - Evaluate the quality of clustering results.\n| - Reduce dimensionality in clustering analysis with an autoencoder.\n\nPrerequisites\n-------------\n\nThis course assumes you have the following knowledge:\n\n- [Introduction to Machine Learning Problem Framing](/machine-learning/problem-framing) or equivalent.\n- [Machine Learning Crash Course](/machine-learning/crash-course), including [Working with numerical data](/machine-learning/crash-course/numerical-data) and [Datasets, generalization, and overfitting](https://developers.google.com/machine-learning/crash-course/overfitting), or equivalent."]]