数据依赖关系 (Data Dependencies):检查您的理解情况

查看以下选项。

以下哪个模型容易受到反馈环的影响?
交通状况预测模型 - 使用海滩上的人群规模作为特征之一预测海滩附近各个高速公路出口的拥堵情况。
有些准备前往海滩的游客可能会根据交通状况预测结果来制定出行计划。如果海滩上人群规模很大且交通预计会拥堵,则许多人可能会另做打算。这样一来,海滩上游客的数量就会减少,进而使模型作出交通畅通的预测,然后这又会导致前往海滩的游客增加,这样,这个循环就会反复下去。
图书推荐模型 - 根据小说的受欢迎程度(即图书的购买量)向用户推荐其可能喜欢的小说。
图书推荐有可能吸引用户购买,而且这些额外销量将作为输入项反馈回模型,从而使该模型更有可能在将来推荐同样的图书。
大学排名模型 - 将选择率(即申请某所学校并被录取的学生所占百分比)作为一项学校评分依据。
此模型的排名可能会提高学生对高评分学校的兴趣,从而使这些学校收到的申请增加。如果这些学校录取的学生人数继续保持不变,则选择率会增大(录取的学生所占百分比会下降)。这样会提升这些学校的排名,从而进一步提高未来有意申请这些学校的学生的兴趣,如此循环下去…
选举结果预测模型 - 在投票结束后对 2% 的投票者进行问卷调查,以预测市长竞选的获胜者。
如果此模型直到投票结束之后才发布其预测,则其预测结果不可能会影响投票者的行为。
住宅价值预测模型 - 使用建筑面积(以平方米为单位计算的面积)、卧室数量和地理位置作为特征预测房价。
快速更改房屋位置、建筑面积或卧室数量以响应价格预测是不可能的,因此不可能形成反馈环。但是,房屋大小与卧室数量之间可能存在关联(房屋越大,房间可能越多),这种关联需要单独梳理清楚。
人脸检测模型:检测照片中的人是否在微笑(根据每月自动更新的照片数据库定期进行训练)。
这种模型不会生成反馈环,因为模型预测结果不会对我们的照片数据库产生任何影响。但是,在这种模型中,输入数据的版本控制非常重要,因为每月更新可能会对模型带来无法预见的影响。