[null,null,["上次更新時間:2024-04-18 (世界標準時間)。"],[[["Decision forests are interpretable machine learning algorithms that work well with tabular data for tasks like classification, regression, and ranking."],["Decision forests offer advantages such as easy configuration, native handling of various data types, robustness to noise, and fast inference/training on smaller datasets."],["This course provides a comprehensive understanding of decision trees and forests, including how they make predictions, different types, performance considerations, and effective usage strategies."],["The course uses YDF library code examples to demonstrate concepts, but the knowledge is transferable to other decision forest libraries."],["Basic machine learning knowledge and familiarity with data preprocessing are prerequisites for this course."]]],[]]