Step 6: Deploy Your Model
Stay organized with collections
Save and categorize content based on your preferences.
You can train, tune, and deploy machine learning models on Google Cloud.
Please keep in mind the following key things when deploying your model:
- Make sure your production data follows the same distribution
as your training and evaluation data.
- Regularly re-evaluate by collecting more training data.
- If your data distribution changes, retrain your model.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-25 UTC.
[null,null,["Last updated 2025-08-25 UTC."],[[["\u003cp\u003eGoogle Cloud provides a platform for training, tuning, and deploying machine learning models.\u003c/p\u003e\n"],["\u003cp\u003eMaintaining data consistency between training, evaluation, and production is crucial for optimal model performance.\u003c/p\u003e\n"],["\u003cp\u003eContinuous model improvement involves regular data collection, reevaluation, and retraining to adapt to evolving data distributions.\u003c/p\u003e\n"]]],[],null,["# Step 6: Deploy Your Model\n\nYou can train, tune, and deploy machine learning models on Google Cloud.\nPlease keep in mind the following key things when deploying your model:\n\n- Make sure your production data [follows the same distribution](https://developers.google.com/machine-learning/guides/rules-of-ml/?utm_source=DevSite&utm_campaign=Text-Class-Guide&utm_medium=referral&utm_content=rules-of-ml&utm_term=distribution#training-serving_skew) as your training and evaluation data.\n- Regularly re-evaluate by collecting more training data.\n- If your data distribution changes, retrain your model."]]