A resposta das camadas de dados é enviada em um arquivo GeoTIFF. Você pode usar suas próprias ferramentas para acessar os dados de seu interesse. Por exemplo, imagine que você tenha uma imagem GeoTIFF mostrando valores de temperatura em uma região. Usando o TypeScript, é possível mapear temperaturas baixas para cores azuis e temperaturas altas para vermelho, criando uma imagem colorida que é imediatamente compreensível para visualizar padrões de temperatura.
Esse código TypeScript foi criado para receber arquivos de imagem especiais chamados de GeoTIFFs e exibi-los em um site usando uma tela HTML (como um porta-retratos digital). O código usa os seguintes componentes:
- Imagens GeoTIFF:os GeoTIFFs podem armazenar várias camadas de dados de imagem, o que os torna úteis para mapas ou análises científicas.
- Imagens RGB:são os tipos de imagens mais conhecidos, como fotos. Cada pixel tem valores de vermelho, verde e azul que determinam a cor.
- Paleta:são como conjuntos de tintas. Eles contêm uma lista de cores predefinidas que podem ser usadas para colorir imagens.
Esta página mostra como receber os valores de dados de pixel (as informações armazenadas em pixels individuais de uma imagem digital, incluindo valores de cor e outros atributos) e calcula a latitude e a longitude do GeoTIFF e os armazena em um objeto TypeScript.
O snippet de código abaixo mostra a definição de tipo em que armazenamos os dados de interesse neste exemplo. Os campos e o tipo de dados são um "type" no TypeScript. Para este exemplo específico, permitimos a verificação de tipo, reduzindo erros de tipo e adicionando confiabilidade ao código, facilitando a manutenção. Defina um tipo para armazenar esses dados e retornar vários valores, como os valores de pixel e a caixa delimitadora de lat/long.
export interface GeoTiff { width: number; height: number; rasters: Array<number>[]; bounds: Bounds; }
Funções principais
O código tem várias funções que funcionam juntas:
renderRGB
: recebe uma imagem GeoTIFF RGB e, opcionalmente, uma máscara (para transparência), cria um elemento de tela do site, percorre cada pixel do GeoTIFF e colore o pixel correspondente na tela.renderPalette
: recebe um GeoTIFF com uma única camada de dados e uma paleta de cores, mapeia os valores de dados do GeoTIFF para as cores da paleta, cria uma nova imagem RGB usando as cores da paleta e chamarenderRGB
para mostrar a imagem na tela.
/** * Renders an RGB GeoTiff image into an HTML canvas. * * The GeoTiff image must include 3 rasters (bands) which * correspond to [Red, Green, Blue] in that order. * * @param {GeoTiff} rgb GeoTiff with RGB values of the image. * @param {GeoTiff} mask Optional mask for transparency, defaults to opaque. * @return {HTMLCanvasElement} Canvas element with the rendered image. */ export function renderRGB(rgb: GeoTiff, mask?: GeoTiff): HTMLCanvasElement { // Create an HTML canvas to draw the image. // https://www.w3schools.com/tags/canvas_createimagedata.asp const canvas = document.createElement('canvas'); // Set the canvas size to the mask size if it's available, // otherwise set it to the RGB data layer size. canvas.width = mask ? mask.width : rgb.width; canvas.height = mask ? mask.height : rgb.height; // Since the mask size can be different than the RGB data layer size, // we calculate the "delta" between the RGB layer size and the canvas/mask // size. For example, if the RGB layer size is the same as the canvas size, // the delta is 1. If the RGB layer size is smaller than the canvas size, // the delta would be greater than 1. // This is used to translate the index from the canvas to the RGB layer. const dw = rgb.width / canvas.width; const dh = rgb.height / canvas.height; // Get the canvas image data buffer. const ctx = canvas.getContext('2d')!; const img = ctx.getImageData(0, 0, canvas.width, canvas.height); // Fill in every pixel in the canvas with the corresponding RGB layer value. // Since Javascript doesn't support multidimensional arrays or tensors, // everything is stored in flat arrays and we have to keep track of the // indices for each row and column ourselves. for (let y = 0; y < canvas.height; y++) { for (let x = 0; x < canvas.width; x++) { // RGB index keeps track of the RGB layer position. // This is multiplied by the deltas since it might be a different // size than the image size. const rgbIdx = Math.floor(y * dh) * rgb.width + Math.floor(x * dw); // Mask index keeps track of the mask layer position. const maskIdx = y * canvas.width + x; // Image index keeps track of the canvas image position. // HTML canvas expects a flat array with consecutive RGBA values. // Each value in the image buffer must be between 0 and 255. // The Alpha value is the transparency of that pixel, // if a mask was not provided, we default to 255 which is opaque. const imgIdx = y * canvas.width * 4 + x * 4; img.data[imgIdx + 0] = rgb.rasters[0][rgbIdx]; // Red img.data[imgIdx + 1] = rgb.rasters[1][rgbIdx]; // Green img.data[imgIdx + 2] = rgb.rasters[2][rgbIdx]; // Blue img.data[imgIdx + 3] = mask // Alpha ? mask.rasters[0][maskIdx] * 255 : 255; } } // Draw the image data buffer into the canvas context. ctx.putImageData(img, 0, 0); return canvas; }
Funções auxiliares
O código também inclui várias funções auxiliares que permitem outras funcionalidades:
createPalette
: cria uma lista de cores a serem usadas para colorir imagens com base em uma lista de códigos de cores hexadecimais.colorToRGB
: converte um código de cor como "#FF00FF" nos componentes vermelho, verde e azul.normalize
,lerp
,clamp
: funções auxiliares matemáticas para processamento de imagens.
/** * Renders a single value GeoTiff image into an HTML canvas. * * The GeoTiff image must include 1 raster (band) which contains * the values we want to display. * * @param {GeoTiff} data GeoTiff with the values of interest. * @param {GeoTiff} mask Optional mask for transparency, defaults to opaque. * @param {string[]} colors Hex color palette, defaults to ['000000', 'ffffff']. * @param {number} min Minimum value of the data range, defaults to 0. * @param {number} max Maximum value of the data range, defaults to 1. * @param {number} index Raster index for the data, defaults to 0. * @return {HTMLCanvasElement} Canvas element with the rendered image. */ export function renderPalette({ data, mask, colors, min, max, index, }: { data: GeoTiff; mask?: GeoTiff; colors?: string[]; min?: number; max?: number; index?: number; }): HTMLCanvasElement { // First create a palette from a list of hex colors. const palette = createPalette(colors ?? ['000000', 'ffffff']); // Normalize each value of our raster/band of interest into indices, // such that they always map into a value within the palette. const indices = data.rasters[index ?? 0] .map((x) => normalize(x, max ?? 1, min ?? 0)) .map((x) => Math.round(x * (palette.length - 1))); return renderRGB( { ...data, // Map each index into the corresponding RGB values. rasters: [ indices.map((i: number) => palette[i].r), indices.map((i: number) => palette[i].g), indices.map((i: number) => palette[i].b), ], }, mask, ); } /** * Creates an {r, g, b} color palette from a hex list of colors. * * Each {r, g, b} value is a number between 0 and 255. * The created palette is always of size 256, regardless of the number of * hex colors passed in. Inbetween values are interpolated. * * @param {string[]} hexColors List of hex colors for the palette. * @return {{r, g, b}[]} RGB values for the color palette. */ export function createPalette(hexColors: string[]): { r: number; g: number; b: number }[] { // Map each hex color into an RGB value. const rgb = hexColors.map(colorToRGB); // Create a palette with 256 colors derived from our rgb colors. const size = 256; const step = (rgb.length - 1) / (size - 1); return Array(size) .fill(0) .map((_, i) => { // Get the lower and upper indices for each color. const index = i * step; const lower = Math.floor(index); const upper = Math.ceil(index); // Interpolate between the colors to get the shades. return { r: lerp(rgb[lower].r, rgb[upper].r, index - lower), g: lerp(rgb[lower].g, rgb[upper].g, index - lower), b: lerp(rgb[lower].b, rgb[upper].b, index - lower), }; }); } /** * Convert a hex color into an {r, g, b} color. * * @param {string} color Hex color like 0099FF or #0099FF. * @return {{r, g, b}} RGB values for that color. */ export function colorToRGB(color: string): { r: number; g: number; b: number } { const hex = color.startsWith('#') ? color.slice(1) : color; return { r: parseInt(hex.substring(0, 2), 16), g: parseInt(hex.substring(2, 4), 16), b: parseInt(hex.substring(4, 6), 16), }; } /** * Normalizes a number to a given data range. * * @param {number} x Value of interest. * @param {number} max Maximum value in data range, defaults to 1. * @param {number} min Minimum value in data range, defaults to 0. * @return {number} Normalized value. */ export function normalize(x: number, max: number = 1, min: number = 0): number { const y = (x - min) / (max - min); return clamp(y, 0, 1); } /** * Calculates the linear interpolation for a value within a range. * * @param {number} x Lower value in the range, when `t` is 0. * @param {number} y Upper value in the range, when `t` is 1. * @param {number} t "Time" between 0 and 1. * @return {number} Inbetween value for that "time". */ export function lerp(x: number, y: number, t: number): number { return x + t * (y - x); } /** * Clamps a value to always be within a range. * * @param {number} x Value to clamp. * @param {number} min Minimum value in the range. * @param {number} max Maximum value in the range. * @return {number} Clamped value. */ export function clamp(x: number, min: number, max: number): number { return Math.min(Math.max(x, min), max); }