מומלץ להשתמש בפרימיטיב Digital Signature עם סוג המפתח ECDSA_P256 ברוב תרחישי השימוש.
Primitive החתימה הדיגיטלית מבטיח שאף אחד לא שינה את הנתונים שלכם, ומוכיח שהנתונים הגיעו מכם. החתימה היא אסימטרית, והיא מתבצעת באמצעות המפתח הפרטי כדי לחתום על הנתונים, והמפתח הציבורי מאמת אותה.
הדוגמאות הבאות יעזרו לכם להתחיל להשתמש בפרימיטיב החתימה הדיגיטלית:
// A utility for signing and verifying files using digital signatures. #include <iostream> #include <memory> #include <ostream> #include <string> #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "tink/config/global_registry.h" #include "util/util.h" #include "tink/keyset_handle.h" #include "tink/public_key_sign.h" #include "tink/public_key_verify.h" #include "tink/signature/signature_config.h" #include "tink/util/status.h" ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format"); ABSL_FLAG(std::string, mode, "", "Mode of operation (sign|verify)"); ABSL_FLAG(std::string, input_filename, "", "Filename to operate on"); ABSL_FLAG(std::string, signature_filename, "", "Path to the signature file"); namespace { using ::crypto::tink::KeysetHandle; using ::crypto::tink::PublicKeySign; using ::crypto::tink::PublicKeyVerify; using ::crypto::tink::util::Status; using ::crypto::tink::util::StatusOr; constexpr absl::string_view kSign = "sign"; constexpr absl::string_view kVerify = "verify"; void ValidateParams() { // ... } } // namespace namespace tink_cc_examples { // Digital signature example CLI implementation. Status DigitalSignatureCli(absl::string_view mode, const std::string& keyset_filename, const std::string& input_filename, const std::string& signature_filename) { Status result = crypto::tink::SignatureConfig::Register(); if (!result.ok()) return result; // Read the keyset from file. StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle = ReadJsonCleartextKeyset(keyset_filename); if (!keyset_handle.ok()) return keyset_handle.status(); // Read the input. StatusOr<std::string> input_file_content = ReadFile(input_filename); if (!input_file_content.ok()) return input_file_content.status(); if (mode == kSign) { StatusOr<std::unique_ptr<PublicKeySign>> public_key_sign = (*keyset_handle) ->GetPrimitive<crypto::tink::PublicKeySign>( crypto::tink::ConfigGlobalRegistry()); if (!public_key_sign.ok()) return public_key_sign.status(); StatusOr<std::string> signature = (*public_key_sign)->Sign(*input_file_content); if (!signature.ok()) return signature.status(); return WriteToFile(*signature, signature_filename); } else { // mode == kVerify StatusOr<std::unique_ptr<PublicKeyVerify>> public_key_verify = (*keyset_handle) ->GetPrimitive<crypto::tink::PublicKeyVerify>( crypto::tink::ConfigGlobalRegistry()); if (!public_key_verify.ok()) return public_key_verify.status(); // Read the signature. StatusOr<std::string> signature_file_content = ReadFile(signature_filename); if (!signature_file_content.ok()) return signature_file_content.status(); return (*public_key_verify) ->Verify(*signature_file_content, *input_file_content); } } } // namespace tink_cc_examples int main(int argc, char** argv) { absl::ParseCommandLine(argc, argv); ValidateParams(); std::string mode = absl::GetFlag(FLAGS_mode); std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename); std::string input_filename = absl::GetFlag(FLAGS_input_filename); std::string signature_filename = absl::GetFlag(FLAGS_signature_filename); std::clog << "Using keyset in " << keyset_filename << " to " << mode; if (mode == kSign) { std::clog << " file " << input_filename << "; the resulting signature is written to " << signature_filename << '\n'; } else { // mode == kVerify std::clog << " the signature in " << signature_filename << " over the content of " << input_filename << '\n'; } CHECK_OK(tink_cc_examples::DigitalSignatureCli( mode, keyset_filename, input_filename, signature_filename)); return 0; }
import ( "bytes" "fmt" "log" "github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset" "github.com/tink-crypto/tink-go/v2/keyset" "github.com/tink-crypto/tink-go/v2/signature" ) func Example() { // A private keyset created with // "tinkey create-keyset --key-template=ECDSA_P256 --out private_keyset.cfg". // Note that this keyset has the secret key information in cleartext. privateJSONKeyset := `{ "key": [{ "keyData": { "keyMaterialType": "ASYMMETRIC_PRIVATE", "typeUrl": "type.googleapis.com/google.crypto.tink.EcdsaPrivateKey", "value": "EkwSBggDEAIYAhogEiSZ9u2nDtvZuDgWgGsVTIZ5/V08N4ycUspTX0RYRrkiIHpEwHxQd1bImkyMvV2bqtUbgMh5uPSTdnUEGrPXdt56GiEA3iUi+CRN71qy0fOCK66xAW/IvFyjOGtxjppRhSFUneo=" }, "keyId": 611814836, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 611814836 }` // The corresponding public keyset created with // "tinkey create-public-keyset --in private_keyset.cfg" publicJSONKeyset := `{ "key": [{ "keyData": { "keyMaterialType": "ASYMMETRIC_PUBLIC", "typeUrl": "type.googleapis.com/google.crypto.tink.EcdsaPublicKey", "value": "EgYIAxACGAIaIBIkmfbtpw7b2bg4FoBrFUyGef1dPDeMnFLKU19EWEa5IiB6RMB8UHdWyJpMjL1dm6rVG4DIebj0k3Z1BBqz13beeg==" }, "keyId": 611814836, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 611814836 }` // Create a keyset handle from the cleartext private keyset in the previous // step. The keyset handle provides abstract access to the underlying keyset to // limit the access of the raw key material. WARNING: In practice, // it is unlikely you will want to use a insecurecleartextkeyset, as it implies // that your key material is passed in cleartext, which is a security risk. // Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault. // See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets. privateKeysetHandle, err := insecurecleartextkeyset.Read( keyset.NewJSONReader(bytes.NewBufferString(privateJSONKeyset))) if err != nil { log.Fatal(err) } // Retrieve the Signer primitive from privateKeysetHandle. signer, err := signature.NewSigner(privateKeysetHandle) if err != nil { log.Fatal(err) } // Use the primitive to sign a message. In this case, the primary key of the // keyset will be used (which is also the only key in this example). data := []byte("data") sig, err := signer.Sign(data) if err != nil { log.Fatal(err) } // Create a keyset handle from the keyset containing the public key. Because the // public keyset does not contain any secrets, we can use [keyset.ReadWithNoSecrets]. publicKeysetHandle, err := keyset.ReadWithNoSecrets( keyset.NewJSONReader(bytes.NewBufferString(publicJSONKeyset))) if err != nil { log.Fatal(err) } // Retrieve the Verifier primitive from publicKeysetHandle. verifier, err := signature.NewVerifier(publicKeysetHandle) if err != nil { log.Fatal(err) } if err = verifier.Verify(sig, data); err != nil { log.Fatal(err) } fmt.Printf("sig is valid") // Output: sig is valid }
package signature; import static java.nio.charset.StandardCharsets.UTF_8; import com.google.crypto.tink.InsecureSecretKeyAccess; import com.google.crypto.tink.KeysetHandle; import com.google.crypto.tink.PublicKeySign; import com.google.crypto.tink.PublicKeyVerify; import com.google.crypto.tink.RegistryConfiguration; import com.google.crypto.tink.TinkJsonProtoKeysetFormat; import com.google.crypto.tink.signature.SignatureConfig; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; /** * A command-line utility for digitally signing and verifying a file. * * <p>It loads cleartext keys from disk - this is not recommended! * * <p>It requires the following arguments: * * <ul> * <li>mode: either 'sign' or 'verify'. * <li>key-file: Read the key material from this file. * <li>input-file: Read the input from this file. * <li>signature-file: name of the file containing a hexadecimal signature of the input file. */ public final class SignatureExample { public static void main(String[] args) throws Exception { if (args.length != 4) { System.err.printf("Expected 4 parameters, got %d\n", args.length); System.err.println( "Usage: java SignatureExample sign/verify key-file input-file signature-file"); System.exit(1); } String mode = args[0]; if (!mode.equals("sign") && !mode.equals("verify")) { System.err.println("Incorrect mode. Please select sign or verify."); System.exit(1); } Path keyFile = Paths.get(args[1]); byte[] msg = Files.readAllBytes(Paths.get(args[2])); Path signatureFile = Paths.get(args[3]); // Register all signature key types with the Tink runtime. SignatureConfig.register(); // Read the keyset into a KeysetHandle. KeysetHandle handle = TinkJsonProtoKeysetFormat.parseKeyset( new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get()); if (mode.equals("sign")) { // Get the primitive. PublicKeySign signer = handle.getPrimitive(RegistryConfiguration.get(), PublicKeySign.class); // Use the primitive to sign data. byte[] signature = signer.sign(msg); Files.write(signatureFile, signature); } else { byte[] signature = Files.readAllBytes(signatureFile); // Get the primitive. PublicKeyVerify verifier = handle.getPrimitive(RegistryConfiguration.get(), PublicKeyVerify.class); verifier.verify(signature, msg); } } private SignatureExample() {} }
import tink from tink import secret_key_access from tink import signature def example(): """Sign and verify using digital signatures.""" # Register the signature key managers. This is needed to create # PublicKeySign and PublicKeyVerify primitives later. signature.register() # A private keyset created with # "tinkey create-keyset --key-template=ECDSA_P256 --out private_keyset.cfg". # Note that this keyset has the secret key information in cleartext. private_keyset = r"""{ "key": [{ "keyData": { "keyMaterialType": "ASYMMETRIC_PRIVATE", "typeUrl": "type.googleapis.com/google.crypto.tink.EcdsaPrivateKey", "value": "EkwSBggDEAIYAhogEiSZ9u2nDtvZuDgWgGsVTIZ5/V08N4ycUspTX0RYRrkiIHpEwHxQd1bImkyMvV2bqtUbgMh5uPSTdnUEGrPXdt56GiEA3iUi+CRN71qy0fOCK66xAW/IvFyjOGtxjppRhSFUneo=" }, "keyId": 611814836, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 611814836 }""" # The corresponding public keyset created with # "tinkey create-public-keyset --in private_keyset.cfg" public_keyset = r"""{ "key": [{ "keyData": { "keyMaterialType": "ASYMMETRIC_PUBLIC", "typeUrl": "type.googleapis.com/google.crypto.tink.EcdsaPublicKey", "value": "EgYIAxACGAIaIBIkmfbtpw7b2bg4FoBrFUyGef1dPDeMnFLKU19EWEa5IiB6RMB8UHdWyJpMjL1dm6rVG4DIebj0k3Z1BBqz13beeg==" }, "keyId": 611814836, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 611814836 }""" # Create a keyset handle from the cleartext keyset in the previous # step. The keyset handle provides abstract access to the underlying keyset to # limit the exposure of accessing the raw key material. WARNING: In practice, # it is unlikely you will want to use tink.json_proto_keyset_format.parse, as # it implies that your key material is passed in cleartext which is a security # risk. private_keyset_handle = tink.json_proto_keyset_format.parse( private_keyset, secret_key_access.TOKEN ) # Retrieve the PublicKeySign primitive we want to use from the keyset # handle. sign_primitive = private_keyset_handle.primitive(signature.PublicKeySign) # Use the primitive to sign a message. In this case the primary key of the # keyset will be used (which is also the only key in this example). sig = sign_primitive.sign(b'msg') # Create a keyset handle from the keyset containing the public key. Because # this keyset does not contain any secrets, we can use # `parse_without_secret`. public_keyset_handle = tink.json_proto_keyset_format.parse_without_secret( public_keyset ) # Retrieve the PublicKeyVerify primitive we want to use from the keyset # handle. verify_primitive = public_keyset_handle.primitive(signature.PublicKeyVerify) # Use the primitive to verify that `sig` is valid signature for the message. # Verify finds the correct key in the keyset. If no key is found or # verification fails, it raises an error. verify_primitive.verify(sig, b'msg') # Note that we can also get the public keyset handle from the private keyset # handle. The verification works the same as above. public_keyset_handle2 = private_keyset_handle.public_keyset_handle() verify_primitive2 = public_keyset_handle2.primitive(signature.PublicKeyVerify) verify_primitive2.verify(sig, b'msg')
חתימה דיגיטלית
בעזרת הפרימיטיב של החתימה הדיגיטלית אפשר לוודא שאף אחד לא שינה את הנתונים. היא מספקת אותנטיות ותקינות של הנתונים החתומים, אבל לא סודיות. הוא אסימטרי, כלומר הוא משתמש בזוג מפתחות (מפתח ציבורי ומפתח פרטי).
לפרימיטיב החתימה הדיגיטלית יש את המאפיינים הבאים:
- אותנטיות: אי אפשר ליצור חתימה ש-
PublicKeyVerify.Verify(signature, message)
מאמתת, אלא אם יש לכם את המפתח הפרטי. - אסימטרי: ליצירת החתימה נעשה שימוש במפתח שונה מזה שמשמש לאימות שלה. כך תוכלו להפיץ את המפתח הציבורי לאימות חתימות לצדדים שלא יכולים ליצור חתימות בעצמם.
אם אין צורך באסימטריה, מומלץ להשתמש במקום זאת בפרימיטיב MAC הפשוט והיעיל יותר.
הפונקציונליות של חתימות דיגיטליות מיוצגת ב-Tink כצמד פרימיטיבים:
- PublicKeySign לחתימה על נתונים
- PublicKeyVerify לאימות החתימה
בחירת סוג מפתח
מומלץ להשתמש ב-ECDSA_P256 ברוב תרחישי השימוש, אבל יש מגוון אפשרויות. באופן כללי, הכלל הבא תקף:
- ECDSA_P256 היא האפשרות הנפוצה ביותר, וזוהי ברירת המחדל הסבירה. עם זאת, חשוב לזכור שחתימות ECDSA הן ניתנות לשינוי.
- פרוטוקול ED25519 יוצר חתימות גורלניות ומספק ביצועים טובים יותר מ-ECDSA_P256.
- RSA_SSA_PKCS1_3072_SHA256_F4 יוצר חתימות ודטרמיניסטיות ומספק את ביצועי האימות הטובים ביותר (אבל החתימה איטית בהרבה מ-ECDSA_P256 או מ-ED25519).
ערבויות אבטחה מינימליות
- אורך הנתונים לחתימה יכול להיות שרירותי
- רמת אבטחה של 128 ביט מפני התקפות הודעות נבחרות אדפטיביות לסכמות שמבוססות על עקומה אליפטית
- רמת אבטחה של 112 ביט מפני התקפות אדפטיביות של הודעות שנבחרו מראש לסכמות מבוססות RSA (מאפשרת מפתחות של 2048 ביט)
גמישות
סכימה לחתימה היא גמישה אם תוקף יכול ליצור חתימה תקפה אחרת להודעה שכבר חתומה. זה לא בעיה ברוב התרחישים, אבל במקרים מסוימים מתכנתים מניחים באופן משתמע שחתימות תקינות הן ייחודיות, וזה עלול להוביל לתוצאות בלתי צפויות.