I want to encrypt data

We recommend the AEAD primitive with the AES128_GCM key type for most data encryption use cases.

Authenticated Encryption with Associated Data (AEAD) is the simplest and most appropriate primitive for most use cases. AEAD provides secrecy and authenticity and ensures that messages always have different ciphertexts (encrypted outputs) even if the plaintexts (the inputs for the encryption) are the same. It is symmetric, using a single key for both encryption and decryption.

The following examples get you started using the AEAD primitive:

C++

// A command-line utility for testing Tink AEAD.
#include <iostream>
#include <memory>
#include <ostream>
#include <string>

#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "tink/aead.h"
#include "tink/aead/aead_config.h"
#include "tink/config/global_registry.h"
#include "util/util.h"
#include "tink/keyset_handle.h"
#include "tink/util/status.h"

ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format");
ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}");
ABSL_FLAG(std::string, input_filename, "", "Filename to operate on");
ABSL_FLAG(std::string, output_filename, "", "Output file name");
ABSL_FLAG(std::string, associated_data, "",
          "Associated data for AEAD (default: empty");

namespace {

using ::crypto::tink::Aead;
using ::crypto::tink::AeadConfig;
using ::crypto::tink::KeysetHandle;
using ::crypto::tink::util::Status;
using ::crypto::tink::util::StatusOr;

constexpr absl::string_view kEncrypt = "encrypt";
constexpr absl::string_view kDecrypt = "decrypt";

void ValidateParams() {
  // ...
}

}  // namespace

namespace tink_cc_examples {

// AEAD example CLI implementation.
Status AeadCli(absl::string_view mode, const std::string& keyset_filename,
               const std::string& input_filename,
               const std::string& output_filename,
               absl::string_view associated_data) {
  Status result = AeadConfig::Register();
  if (!result.ok()) return result;

  // Read the keyset from file.
  StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle =
      ReadJsonCleartextKeyset(keyset_filename);
  if (!keyset_handle.ok()) return keyset_handle.status();

  // Get the primitive.
  StatusOr<std::unique_ptr<Aead>> aead =
      (*keyset_handle)
          ->GetPrimitive<crypto::tink::Aead>(
              crypto::tink::ConfigGlobalRegistry());
  if (!aead.ok()) return aead.status();

  // Read the input.
  StatusOr<std::string> input_file_content = ReadFile(input_filename);
  if (!input_file_content.ok()) return input_file_content.status();

  // Compute the output.
  std::string output;
  if (mode == kEncrypt) {
    StatusOr<std::string> encrypt_result =
        (*aead)->Encrypt(*input_file_content, associated_data);
    if (!encrypt_result.ok()) return encrypt_result.status();
    output = encrypt_result.value();
  } else {  // operation == kDecrypt.
    StatusOr<std::string> decrypt_result =
        (*aead)->Decrypt(*input_file_content, associated_data);
    if (!decrypt_result.ok()) return decrypt_result.status();
    output = decrypt_result.value();
  }

  // Write the output to the output file.
  return WriteToFile(output, output_filename);
}

}  // namespace tink_cc_examples

int main(int argc, char** argv) {
  absl::ParseCommandLine(argc, argv);

  ValidateParams();

  std::string mode = absl::GetFlag(FLAGS_mode);
  std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename);
  std::string input_filename = absl::GetFlag(FLAGS_input_filename);
  std::string output_filename = absl::GetFlag(FLAGS_output_filename);
  std::string associated_data = absl::GetFlag(FLAGS_associated_data);

  std::clog << "Using keyset from file " << keyset_filename << " to AEAD-"
            << mode << " file " << input_filename << " with associated data '"
            << associated_data << "'." << '\n';
  std::clog << "The resulting output will be written to " << output_filename
            << '\n';

  CHECK_OK(tink_cc_examples::AeadCli(mode, keyset_filename, input_filename,
                                     output_filename, associated_data));
  return 0;
}

Go

import (
	"bytes"
	"fmt"
	"log"

	"github.com/tink-crypto/tink-go/v2/aead"
	"github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset"
	"github.com/tink-crypto/tink-go/v2/keyset"
)

func Example() {
	// A keyset created with "tinkey create-keyset --key-template=AES256_GCM". Note
	// that this keyset has the secret key information in cleartext.
	jsonKeyset := `{
			"key": [{
					"keyData": {
							"keyMaterialType":
									"SYMMETRIC",
							"typeUrl":
									"type.googleapis.com/google.crypto.tink.AesGcmKey",
							"value":
									"GiBWyUfGgYk3RTRhj/LIUzSudIWlyjCftCOypTr0jCNSLg=="
					},
					"keyId": 294406504,
					"outputPrefixType": "TINK",
					"status": "ENABLED"
			}],
			"primaryKeyId": 294406504
	}`

	// Create a keyset handle from the cleartext keyset in the previous
	// step. The keyset handle provides abstract access to the underlying keyset to
	// limit the exposure of accessing the raw key material. WARNING: In practice,
	// it is unlikely you will want to use a insecurecleartextkeyset, as it implies
	// that your key material is passed in cleartext, which is a security risk.
	// Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault.
	// See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets.
	keysetHandle, err := insecurecleartextkeyset.Read(
		keyset.NewJSONReader(bytes.NewBufferString(jsonKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the AEAD primitive we want to use from the keyset handle.
	primitive, err := aead.New(keysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	// Use the primitive to encrypt a message. In this case the primary key of the
	// keyset will be used (which is also the only key in this example).
	plaintext := []byte("message")
	associatedData := []byte("associated data")
	ciphertext, err := primitive.Encrypt(plaintext, associatedData)
	if err != nil {
		log.Fatal(err)
	}

	// Use the primitive to decrypt the message. Decrypt finds the correct key in
	// the keyset and decrypts the ciphertext. If no key is found or decryption
	// fails, it returns an error.
	decrypted, err := primitive.Decrypt(ciphertext, associatedData)
	if err != nil {
		log.Fatal(err)
	}

	fmt.Println(string(decrypted))
	// Output: message
}

Java

package aead;

import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.crypto.tink.Aead;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.TinkJsonProtoKeysetFormat;
import com.google.crypto.tink.aead.AeadConfig;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * A command-line utility for encrypting small files with AEAD.
 *
 * <p>It loads cleartext keys from disk - this is not recommended!
 *
 * <p>It requires the following arguments:
 *
 * <ul>
 *   <li>mode: Can be "encrypt" or "decrypt" to encrypt/decrypt the input to the output.
 *   <li>key-file: Read the key material from this file.
 *   <li>input-file: Read the input from this file.
 *   <li>output-file: Write the result to this file.
 *   <li>[optional] associated-data: Associated data used for the encryption or decryption.
 */
public final class AeadExample {
  private static final String MODE_ENCRYPT = "encrypt";
  private static final String MODE_DECRYPT = "decrypt";

  public static void main(String[] args) throws Exception {
    if (args.length != 4 && args.length != 5) {
      System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length);
      System.err.println(
          "Usage: java AeadExample encrypt/decrypt key-file input-file output-file"
              + " [associated-data]");
      System.exit(1);
    }
    String mode = args[0];
    Path keyFile = Paths.get(args[1]);
    Path inputFile = Paths.get(args[2]);
    Path outputFile = Paths.get(args[3]);
    byte[] associatedData = new byte[0];
    if (args.length == 5) {
      associatedData = args[4].getBytes(UTF_8);
    }
    // Register all AEAD key types with the Tink runtime.
    AeadConfig.register();

    // Read the keyset into a KeysetHandle.
    KeysetHandle handle =
        TinkJsonProtoKeysetFormat.parseKeyset(
            new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get());

    // Get the primitive.
    Aead aead = handle.getPrimitive(Aead.class);

    // Use the primitive to encrypt/decrypt files.
    if (MODE_ENCRYPT.equals(mode)) {
      byte[] plaintext = Files.readAllBytes(inputFile);
      byte[] ciphertext = aead.encrypt(plaintext, associatedData);
      Files.write(outputFile, ciphertext);
    } else if (MODE_DECRYPT.equals(mode)) {
      byte[] ciphertext = Files.readAllBytes(inputFile);
      byte[] plaintext = aead.decrypt(ciphertext, associatedData);
      Files.write(outputFile, plaintext);
    } else {
      System.err.println("The first argument must be either encrypt or decrypt, got: " + mode);
      System.exit(1);
    }
  }

  private AeadExample() {}
}

Obj-C

HOW-TO

Python

import tink
from tink import aead
from tink import secret_key_access


def example():
  """Encrypt and decrypt using AEAD."""
  # Register the AEAD key managers. This is needed to create an Aead primitive
  # later.
  aead.register()

  # A keyset created with "tinkey create-keyset --key-template=AES256_GCM". Note
  # that this keyset has the secret key information in cleartext.
  keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "SYMMETRIC",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.AesGcmKey",
              "value":
                  "GiBWyUfGgYk3RTRhj/LIUzSudIWlyjCftCOypTr0jCNSLg=="
          },
          "keyId": 294406504,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 294406504
  }"""

  # Create a keyset handle from the cleartext keyset in the previous
  # step. The keyset handle provides abstract access to the underlying keyset to
  # limit access of the raw key material. WARNING: In practice, it is unlikely
  # you will want to use a cleartext_keyset_handle, as it implies that your key
  # material is passed in cleartext, which is a security risk.
  keyset_handle = tink.json_proto_keyset_format.parse(
      keyset, secret_key_access.TOKEN
  )

  # Retrieve the Aead primitive we want to use from the keyset handle.
  primitive = keyset_handle.primitive(aead.Aead)

  # Use the primitive to encrypt a message. In this case the primary key of the
  # keyset will be used (which is also the only key in this example).
  ciphertext = primitive.encrypt(b'msg', b'associated_data')

  # Use the primitive to decrypt the message. Decrypt finds the correct key in
  # the keyset and decrypts the ciphertext. If no key is found or decryption
  # fails, it raises an error.
  output = primitive.decrypt(ciphertext, b'associated_data')

AEAD

The Authenticated Encryption with Associated Data (AEAD) primitive is the most common primitive for data encryption and is suitable for most needs.

AEAD has the following properties:

  • Secrecy: Nothing about the plaintext is known, except its length.
  • Authenticity: It is impossible to change the encrypted plaintext underlying the ciphertext without being detected.
  • Symmetric: Encrypting the plaintext and decrypting the ciphertext is done with the same key.
  • Randomization: Encryption is randomized. Two messages with the same plaintext yield different ciphertexts. Attackers cannot know which ciphertext corresponds to a given plaintext. If you want to avoid this, use Deterministic AEAD instead.

Associated data

AEAD can be used to tie ciphertext to specific associated data. Suppose you have a database with the fields user-id and encrypted-medical-history. In this scenario, user-id can be used as associated data when encrypting encrypted-medical-history. This prevents an attacker from moving medical history from one user to another.

Choose a key type

While we recommend AES128_GCM for most uses, there are various key types for different needs (for 256-bit security, replace AES128 with AES256 below). Generally:

  • AES128_CTR_HMAC_SHA256 with a 16-byte Initialization Vector (IV) is the most conservative mode with good bounds.
  • AES128_EAX is slightly less conservative and slightly faster than AES128_CTR_HMAC_SHA256.
  • AES128_GCM is usually the fastest mode, with the strictest limits on the number of messages and message size. When these limits on plaintext and associated data lengths (below) are exceeded, AES128_GCM fails and leaks key material.
  • AES128_GCM_SIV is nearly as fast as AES128_GCM. It has the same limits as AES128_GCM on the number of messages and message size, but when these limits are exceeded, it fails in a less catastrophic way: it may only leak the fact that two messages are equal. This makes it safer to use than AES128_GCM, but it is less widely used in practice. To use this in Java, you have to install Conscrypt.
  • XChaCha20Poly1305 has a much greater limit on the number of messages and message size than AES128_GCM, but when it does fail (very unlikely) it also leaks key material. It isn't hardware accelerated, so it can be slower than AES modes in situations where hardware acceleration is available.

Security guarantees

AEAD implementations offer:

  • CCA2 security.
  • At least 80-bit authentication strength.
  • The ability to encrypt at least 232 messages with a total of 250 bytes. No attack with up to 232 chosen plaintexts or chosen ciphertexts has success probability larger than 2-32.