Consigliamo l'elemento primitivo AEAD con il tipo di chiave AES128_GCM per la maggior parte dei casi d'uso di crittografia dei dati.
La crittografia autenticata con dati associati (AEAD) è la primitiva più semplice e appropriata per la maggior parte dei casi d'uso. AEAD garantisce segretezza e autenticità e assicura che i messaggi abbiano sempre testi cifrati diversi (output criptati) anche se i testi in chiaro (gli input per la crittografia) sono uguali. È simmetrica, in quanto utilizza una singola chiave sia per la crittografia sia per la decrittografia.
Gli esempi riportati di seguito ti aiutano a iniziare a utilizzare la primitiva AEAD:
C++
// A command-line utility for testing Tink AEAD. #include <iostream> #include <memory> #include <ostream> #include <string> #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "tink/aead.h" #include "tink/aead/aead_config.h" #include "tink/config/global_registry.h" #include "util/util.h" #include "tink/keyset_handle.h" #include "tink/util/status.h" ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format"); ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}"); ABSL_FLAG(std::string, input_filename, "", "Filename to operate on"); ABSL_FLAG(std::string, output_filename, "", "Output file name"); ABSL_FLAG(std::string, associated_data, "", "Associated data for AEAD (default: empty"); namespace { using ::crypto::tink::Aead; using ::crypto::tink::AeadConfig; using ::crypto::tink::KeysetHandle; using ::crypto::tink::util::Status; using ::crypto::tink::util::StatusOr; constexpr absl::string_view kEncrypt = "encrypt"; constexpr absl::string_view kDecrypt = "decrypt"; void ValidateParams() { // ... } } // namespace namespace tink_cc_examples { // AEAD example CLI implementation. Status AeadCli(absl::string_view mode, const std::string& keyset_filename, const std::string& input_filename, const std::string& output_filename, absl::string_view associated_data) { Status result = AeadConfig::Register(); if (!result.ok()) return result; // Read the keyset from file. StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle = ReadJsonCleartextKeyset(keyset_filename); if (!keyset_handle.ok()) return keyset_handle.status(); // Get the primitive. StatusOr<std::unique_ptr<Aead>> aead = (*keyset_handle) ->GetPrimitive<crypto::tink::Aead>( crypto::tink::ConfigGlobalRegistry()); if (!aead.ok()) return aead.status(); // Read the input. StatusOr<std::string> input_file_content = ReadFile(input_filename); if (!input_file_content.ok()) return input_file_content.status(); // Compute the output. std::string output; if (mode == kEncrypt) { StatusOr<std::string> encrypt_result = (*aead)->Encrypt(*input_file_content, associated_data); if (!encrypt_result.ok()) return encrypt_result.status(); output = encrypt_result.value(); } else { // operation == kDecrypt. StatusOr<std::string> decrypt_result = (*aead)->Decrypt(*input_file_content, associated_data); if (!decrypt_result.ok()) return decrypt_result.status(); output = decrypt_result.value(); } // Write the output to the output file. return WriteToFile(output, output_filename); } } // namespace tink_cc_examples int main(int argc, char** argv) { absl::ParseCommandLine(argc, argv); ValidateParams(); std::string mode = absl::GetFlag(FLAGS_mode); std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename); std::string input_filename = absl::GetFlag(FLAGS_input_filename); std::string output_filename = absl::GetFlag(FLAGS_output_filename); std::string associated_data = absl::GetFlag(FLAGS_associated_data); std::clog << "Using keyset from file " << keyset_filename << " to AEAD-" << mode << " file " << input_filename << " with associated data '" << associated_data << "'." << '\n'; std::clog << "The resulting output will be written to " << output_filename << '\n'; CHECK_OK(tink_cc_examples::AeadCli(mode, keyset_filename, input_filename, output_filename, associated_data)); return 0; }
Vai
import ( "bytes" "fmt" "log" "github.com/tink-crypto/tink-go/v2/aead" "github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset" "github.com/tink-crypto/tink-go/v2/keyset" ) func Example() { // A keyset created with "tinkey create-keyset --key-template=AES256_GCM". Note // that this keyset has the secret key information in cleartext. jsonKeyset := `{ "key": [{ "keyData": { "keyMaterialType": "SYMMETRIC", "typeUrl": "type.googleapis.com/google.crypto.tink.AesGcmKey", "value": "GiBWyUfGgYk3RTRhj/LIUzSudIWlyjCftCOypTr0jCNSLg==" }, "keyId": 294406504, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 294406504 }` // Create a keyset handle from the cleartext keyset in the previous // step. The keyset handle provides abstract access to the underlying keyset to // limit the exposure of accessing the raw key material. WARNING: In practice, // it is unlikely you will want to use a insecurecleartextkeyset, as it implies // that your key material is passed in cleartext, which is a security risk. // Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault. // See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets. keysetHandle, err := insecurecleartextkeyset.Read( keyset.NewJSONReader(bytes.NewBufferString(jsonKeyset))) if err != nil { log.Fatal(err) } // Retrieve the AEAD primitive we want to use from the keyset handle. primitive, err := aead.New(keysetHandle) if err != nil { log.Fatal(err) } // Use the primitive to encrypt a message. In this case the primary key of the // keyset will be used (which is also the only key in this example). plaintext := []byte("message") associatedData := []byte("associated data") ciphertext, err := primitive.Encrypt(plaintext, associatedData) if err != nil { log.Fatal(err) } // Use the primitive to decrypt the message. Decrypt finds the correct key in // the keyset and decrypts the ciphertext. If no key is found or decryption // fails, it returns an error. decrypted, err := primitive.Decrypt(ciphertext, associatedData) if err != nil { log.Fatal(err) } fmt.Println(string(decrypted)) // Output: message }
Java
package aead; import static java.nio.charset.StandardCharsets.UTF_8; import com.google.crypto.tink.Aead; import com.google.crypto.tink.InsecureSecretKeyAccess; import com.google.crypto.tink.KeysetHandle; import com.google.crypto.tink.TinkJsonProtoKeysetFormat; import com.google.crypto.tink.aead.AeadConfig; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; /** * A command-line utility for encrypting small files with AEAD. * * <p>It loads cleartext keys from disk - this is not recommended! * * <p>It requires the following arguments: * * <ul> * <li>mode: Can be "encrypt" or "decrypt" to encrypt/decrypt the input to the output. * <li>key-file: Read the key material from this file. * <li>input-file: Read the input from this file. * <li>output-file: Write the result to this file. * <li>[optional] associated-data: Associated data used for the encryption or decryption. */ public final class AeadExample { private static final String MODE_ENCRYPT = "encrypt"; private static final String MODE_DECRYPT = "decrypt"; public static void main(String[] args) throws Exception { if (args.length != 4 && args.length != 5) { System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length); System.err.println( "Usage: java AeadExample encrypt/decrypt key-file input-file output-file" + " [associated-data]"); System.exit(1); } String mode = args[0]; Path keyFile = Paths.get(args[1]); Path inputFile = Paths.get(args[2]); Path outputFile = Paths.get(args[3]); byte[] associatedData = new byte[0]; if (args.length == 5) { associatedData = args[4].getBytes(UTF_8); } // Register all AEAD key types with the Tink runtime. AeadConfig.register(); // Read the keyset into a KeysetHandle. KeysetHandle handle = TinkJsonProtoKeysetFormat.parseKeyset( new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get()); // Get the primitive. Aead aead = handle.getPrimitive(Aead.class); // Use the primitive to encrypt/decrypt files. if (MODE_ENCRYPT.equals(mode)) { byte[] plaintext = Files.readAllBytes(inputFile); byte[] ciphertext = aead.encrypt(plaintext, associatedData); Files.write(outputFile, ciphertext); } else if (MODE_DECRYPT.equals(mode)) { byte[] ciphertext = Files.readAllBytes(inputFile); byte[] plaintext = aead.decrypt(ciphertext, associatedData); Files.write(outputFile, plaintext); } else { System.err.println("The first argument must be either encrypt or decrypt, got: " + mode); System.exit(1); } } private AeadExample() {} }
Obj-C
Python
import tink from tink import aead from tink import secret_key_access def example(): """Encrypt and decrypt using AEAD.""" # Register the AEAD key managers. This is needed to create an Aead primitive # later. aead.register() # A keyset created with "tinkey create-keyset --key-template=AES256_GCM". Note # that this keyset has the secret key information in cleartext. keyset = r"""{ "key": [{ "keyData": { "keyMaterialType": "SYMMETRIC", "typeUrl": "type.googleapis.com/google.crypto.tink.AesGcmKey", "value": "GiBWyUfGgYk3RTRhj/LIUzSudIWlyjCftCOypTr0jCNSLg==" }, "keyId": 294406504, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 294406504 }""" # Create a keyset handle from the cleartext keyset in the previous # step. The keyset handle provides abstract access to the underlying keyset to # limit access of the raw key material. WARNING: In practice, it is unlikely # you will want to use a cleartext_keyset_handle, as it implies that your key # material is passed in cleartext, which is a security risk. keyset_handle = tink.json_proto_keyset_format.parse( keyset, secret_key_access.TOKEN ) # Retrieve the Aead primitive we want to use from the keyset handle. primitive = keyset_handle.primitive(aead.Aead) # Use the primitive to encrypt a message. In this case the primary key of the # keyset will be used (which is also the only key in this example). ciphertext = primitive.encrypt(b'msg', b'associated_data') # Use the primitive to decrypt the message. Decrypt finds the correct key in # the keyset and decrypts the ciphertext. If no key is found or decryption # fails, it raises an error. output = primitive.decrypt(ciphertext, b'associated_data')
AEAD
La primitiva AEAD (Authenticated Encryption with Associated Data) è la più comune per la crittografia dei dati ed è adatta alla maggior parte delle esigenze.
AEAD ha le seguenti proprietà:
- Secrecy: non è noto nulla del testo non cifrato, tranne la sua lunghezza.
- Autenticità: è impossibile modificare il testo normale criptato sottostante il testo cifrato senza che ciò venga rilevato.
- Simmetrica: la crittografia del testo in chiaro e la decrittografia del testo cifrato vengono eseguite con la stessa chiave.
- Randomizzazione: la crittografia è randomizzata. Due messaggi con lo stesso testo in chiaro generano crittogrammi diversi. Gli aggressori non possono sapere quale messaggio cifrato corrisponde a un determinato testo non criptato. Se vuoi evitarlo, utilizza AEAD deterministico.
Dati associati
AEAD può essere utilizzato per legare il testo cifrato a dati associati specifici. Supponi di avere un database con i campi user-id
e encrypted-medical-history
. In questo scenario, user-id
può essere utilizzato come
dati associati durante la crittografia di encrypted-medical-history
. In questo modo, un malintenzionato non può trasferire la storia clinica da un utente all'altro.
Scegli un tipo di chiave
Sebbene consigliamo AES128_GCM per la maggior parte degli utilizzi, esistono vari tipi di chiavi per esigenze diverse (per la sicurezza a 256 bit, sostituisci AES128 con AES256 di seguito). In generale:
- AES128_CTR_HMAC_SHA256 con un vettore di inizializzazione (IV) di 16 byte è la modalità più conservativa con limiti adeguati.
- AES128_EAX è leggermente meno conservativo e leggermente più veloce di AES128_CTR_HMAC_SHA256.
- AES128_GCM è in genere la modalità più veloce, con i limiti più rigidi sul numero di messaggi e sulle dimensioni dei messaggi. Quando questi limiti relativi alla lunghezza del testo in chiaro e dei dati associati (di seguito) vengono superati, AES128_GCM non riesce e vengono divulgati i materiali delle chiavi.
- AES128_GCM_SIV è quasi veloce quanto AES128_GCM. Ha gli stessi limiti di AES128_GCM per il numero e le dimensioni dei messaggi, ma quando questi limiti vengono superati, si verifica un errore in modo meno catastrofico: potrebbe essere rivelato solo il fatto che due messaggi sono uguali. Questo lo rende più sicuro da usare rispetto ad AES128_GCM, ma è meno utilizzato nella pratica. Per utilizzarlo in Java, devi installare Conscrypt.
- XChaCha20Poly1305 ha un limite molto maggiore per il numero di messaggi e per le dimensioni dei messaggi rispetto ad AES128_GCM, ma in caso di errore (molto improbabile) consente anche la fuga di materiale chiave. Non è accelerato hardware, quindi può essere più lento rispetto alle modalità AES nelle situazioni in cui è disponibile l'accelerazione hardware.
Garanzie di sicurezza
Le implementazioni AEAD offrono:
- Sicurezza CCA2.
- Efficacia dell'autenticazione di almeno 80 bit.
- La possibilità di criptare almeno 232 messaggi per un totale di 250 byte. Nessun attacco con fino a 232 testi in chiaro o cifre scelte ha una probabilità di successo superiore a 2-32.