W przypadku większości zastosowań szyfrowania danych zalecamy użycie prymitywu AEAD z typem klucza AES128_GCM.
Zaszyfrowanie z uwierzytelnianiem i danymi powiązanymi (AEAD) jest najprostszym i najbardziej odpowiednim w większości przypadków. AEAD zapewnia poufność i autentyczność oraz gwarantuje, że wiadomości zawsze mają różne szyfrogramy (szyfrowane dane wyjściowe), nawet jeśli szyfrogramy (dane wejściowe do szyfrowania) są takie same. Jest to szyfr symetryczny, który używa jednego klucza do szyfrowania i odszyfrowywania.
Poniżej znajdziesz przykłady, które pomogą Ci zacząć korzystać z elementu AEAD:
C++
// A command-line utility for testing Tink AEAD. #include <iostream> #include <memory> #include <ostream> #include <string> #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "tink/aead.h" #include "tink/aead/aead_config.h" #include "tink/config/global_registry.h" #include "util/util.h" #include "tink/keyset_handle.h" #include "tink/util/status.h" ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format"); ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}"); ABSL_FLAG(std::string, input_filename, "", "Filename to operate on"); ABSL_FLAG(std::string, output_filename, "", "Output file name"); ABSL_FLAG(std::string, associated_data, "", "Associated data for AEAD (default: empty"); namespace { using ::crypto::tink::Aead; using ::crypto::tink::AeadConfig; using ::crypto::tink::KeysetHandle; using ::crypto::tink::util::Status; using ::crypto::tink::util::StatusOr; constexpr absl::string_view kEncrypt = "encrypt"; constexpr absl::string_view kDecrypt = "decrypt"; void ValidateParams() { // ... } } // namespace namespace tink_cc_examples { // AEAD example CLI implementation. Status AeadCli(absl::string_view mode, const std::string& keyset_filename, const std::string& input_filename, const std::string& output_filename, absl::string_view associated_data) { Status result = AeadConfig::Register(); if (!result.ok()) return result; // Read the keyset from file. StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle = ReadJsonCleartextKeyset(keyset_filename); if (!keyset_handle.ok()) return keyset_handle.status(); // Get the primitive. StatusOr<std::unique_ptr<Aead>> aead = (*keyset_handle) ->GetPrimitive<crypto::tink::Aead>( crypto::tink::ConfigGlobalRegistry()); if (!aead.ok()) return aead.status(); // Read the input. StatusOr<std::string> input_file_content = ReadFile(input_filename); if (!input_file_content.ok()) return input_file_content.status(); // Compute the output. std::string output; if (mode == kEncrypt) { StatusOr<std::string> encrypt_result = (*aead)->Encrypt(*input_file_content, associated_data); if (!encrypt_result.ok()) return encrypt_result.status(); output = encrypt_result.value(); } else { // operation == kDecrypt. StatusOr<std::string> decrypt_result = (*aead)->Decrypt(*input_file_content, associated_data); if (!decrypt_result.ok()) return decrypt_result.status(); output = decrypt_result.value(); } // Write the output to the output file. return WriteToFile(output, output_filename); } } // namespace tink_cc_examples int main(int argc, char** argv) { absl::ParseCommandLine(argc, argv); ValidateParams(); std::string mode = absl::GetFlag(FLAGS_mode); std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename); std::string input_filename = absl::GetFlag(FLAGS_input_filename); std::string output_filename = absl::GetFlag(FLAGS_output_filename); std::string associated_data = absl::GetFlag(FLAGS_associated_data); std::clog << "Using keyset from file " << keyset_filename << " to AEAD-" << mode << " file " << input_filename << " with associated data '" << associated_data << "'." << '\n'; std::clog << "The resulting output will be written to " << output_filename << '\n'; CHECK_OK(tink_cc_examples::AeadCli(mode, keyset_filename, input_filename, output_filename, associated_data)); return 0; }
Przeczytaj
import ( "bytes" "fmt" "log" "github.com/tink-crypto/tink-go/v2/aead" "github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset" "github.com/tink-crypto/tink-go/v2/keyset" ) func Example() { // A keyset created with "tinkey create-keyset --key-template=AES256_GCM". Note // that this keyset has the secret key information in cleartext. jsonKeyset := `{ "key": [{ "keyData": { "keyMaterialType": "SYMMETRIC", "typeUrl": "type.googleapis.com/google.crypto.tink.AesGcmKey", "value": "GiBWyUfGgYk3RTRhj/LIUzSudIWlyjCftCOypTr0jCNSLg==" }, "keyId": 294406504, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 294406504 }` // Create a keyset handle from the cleartext keyset in the previous // step. The keyset handle provides abstract access to the underlying keyset to // limit the exposure of accessing the raw key material. WARNING: In practice, // it is unlikely you will want to use a insecurecleartextkeyset, as it implies // that your key material is passed in cleartext, which is a security risk. // Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault. // See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets. keysetHandle, err := insecurecleartextkeyset.Read( keyset.NewJSONReader(bytes.NewBufferString(jsonKeyset))) if err != nil { log.Fatal(err) } // Retrieve the AEAD primitive we want to use from the keyset handle. primitive, err := aead.New(keysetHandle) if err != nil { log.Fatal(err) } // Use the primitive to encrypt a message. In this case the primary key of the // keyset will be used (which is also the only key in this example). plaintext := []byte("message") associatedData := []byte("associated data") ciphertext, err := primitive.Encrypt(plaintext, associatedData) if err != nil { log.Fatal(err) } // Use the primitive to decrypt the message. Decrypt finds the correct key in // the keyset and decrypts the ciphertext. If no key is found or decryption // fails, it returns an error. decrypted, err := primitive.Decrypt(ciphertext, associatedData) if err != nil { log.Fatal(err) } fmt.Println(string(decrypted)) // Output: message }
Java
package aead; import static java.nio.charset.StandardCharsets.UTF_8; import com.google.crypto.tink.Aead; import com.google.crypto.tink.InsecureSecretKeyAccess; import com.google.crypto.tink.KeysetHandle; import com.google.crypto.tink.TinkJsonProtoKeysetFormat; import com.google.crypto.tink.aead.AeadConfig; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; /** * A command-line utility for encrypting small files with AEAD. * * <p>It loads cleartext keys from disk - this is not recommended! * * <p>It requires the following arguments: * * <ul> * <li>mode: Can be "encrypt" or "decrypt" to encrypt/decrypt the input to the output. * <li>key-file: Read the key material from this file. * <li>input-file: Read the input from this file. * <li>output-file: Write the result to this file. * <li>[optional] associated-data: Associated data used for the encryption or decryption. */ public final class AeadExample { private static final String MODE_ENCRYPT = "encrypt"; private static final String MODE_DECRYPT = "decrypt"; public static void main(String[] args) throws Exception { if (args.length != 4 && args.length != 5) { System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length); System.err.println( "Usage: java AeadExample encrypt/decrypt key-file input-file output-file" + " [associated-data]"); System.exit(1); } String mode = args[0]; Path keyFile = Paths.get(args[1]); Path inputFile = Paths.get(args[2]); Path outputFile = Paths.get(args[3]); byte[] associatedData = new byte[0]; if (args.length == 5) { associatedData = args[4].getBytes(UTF_8); } // Register all AEAD key types with the Tink runtime. AeadConfig.register(); // Read the keyset into a KeysetHandle. KeysetHandle handle = TinkJsonProtoKeysetFormat.parseKeyset( new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get()); // Get the primitive. Aead aead = handle.getPrimitive(Aead.class); // Use the primitive to encrypt/decrypt files. if (MODE_ENCRYPT.equals(mode)) { byte[] plaintext = Files.readAllBytes(inputFile); byte[] ciphertext = aead.encrypt(plaintext, associatedData); Files.write(outputFile, ciphertext); } else if (MODE_DECRYPT.equals(mode)) { byte[] ciphertext = Files.readAllBytes(inputFile); byte[] plaintext = aead.decrypt(ciphertext, associatedData); Files.write(outputFile, plaintext); } else { System.err.println("The first argument must be either encrypt or decrypt, got: " + mode); System.exit(1); } } private AeadExample() {} }
Obj-C
Python
import tink from tink import aead from tink import secret_key_access def example(): """Encrypt and decrypt using AEAD.""" # Register the AEAD key managers. This is needed to create an Aead primitive # later. aead.register() # A keyset created with "tinkey create-keyset --key-template=AES256_GCM". Note # that this keyset has the secret key information in cleartext. keyset = r"""{ "key": [{ "keyData": { "keyMaterialType": "SYMMETRIC", "typeUrl": "type.googleapis.com/google.crypto.tink.AesGcmKey", "value": "GiBWyUfGgYk3RTRhj/LIUzSudIWlyjCftCOypTr0jCNSLg==" }, "keyId": 294406504, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 294406504 }""" # Create a keyset handle from the cleartext keyset in the previous # step. The keyset handle provides abstract access to the underlying keyset to # limit access of the raw key material. WARNING: In practice, it is unlikely # you will want to use a cleartext_keyset_handle, as it implies that your key # material is passed in cleartext, which is a security risk. keyset_handle = tink.json_proto_keyset_format.parse( keyset, secret_key_access.TOKEN ) # Retrieve the Aead primitive we want to use from the keyset handle. primitive = keyset_handle.primitive(aead.Aead) # Use the primitive to encrypt a message. In this case the primary key of the # keyset will be used (which is also the only key in this example). ciphertext = primitive.encrypt(b'msg', b'associated_data') # Use the primitive to decrypt the message. Decrypt finds the correct key in # the keyset and decrypts the ciphertext. If no key is found or decryption # fails, it raises an error. output = primitive.decrypt(ciphertext, b'associated_data')
AEAD
Primitive Authenticated Encryption with Associated Data (AEAD) jest najczęściej używanym primitivem do szyfrowania danych i spełnia większość potrzeb.
AEAD ma te właściwości:
- Secrecy o tekstach zwykłych wiadomo tylko ich długość.
- Autentyczność: nie można zmienić zaszyfrowanego tekstu jawnego bez wykrycia.
- Symetryczne: szyfrowanie tekstu zwykłego i odszyfrowywanie tekstu zaszyfrowanego odbywa się za pomocą tego samego klucza.
- Randomizacja: szyfrowanie jest losowe. 2 wiadomości z tym samym tekstem jawnym dają różne teksty zaszyfrowane. Hakerzy nie mogą wiedzieć, który tekst zaszyfrowany odpowiada danemu tekstowi jawnemu. Jeśli chcesz tego uniknąć, użyj zamiast tego deterministycznego AEAD.
Powiązane dane
AEAD może służyć do wiązania tekstu zaszyfrowanego z konkretnymi powiązanymi danymi. Załóżmy, że masz bazę danych z polami user-id
i encrypted-medical-history
. W tym scenariuszu user-id
może być używany jako dane powiązane podczas szyfrowania encrypted-medical-history
. Zapobiega to przenoszeniu historii medycznej z jednego konta na drugie.
Wybieranie typu klucza
Chociaż w większości przypadków zalecamy użycie AES128_GCM, istnieją różne typy kluczy do różnych potrzeb (aby uzyskać bezpieczeństwo na poziomie 256 bitów, poniżej zastąp AES128 wartością AES256). Ogólnie:
- AES128_CTR_HMAC_SHA256 z 16-bajtowym wektorem inicjalizacji (IV) to najbardziej zachowawczy tryb z dobrymi granicami.
- AES128_EAX jest nieco mniej zachowawczy i nieco szybszy niż AES128_CTR_HMAC_SHA256.
- AES128_GCM to zwykle najszybszy tryb, który ma najsurowsze limity liczby i rozmiaru wiadomości. Jeśli przekroczysz te limity dotyczące długości danych w postaci zwykłej i powiązanych z nimi danych (poniżej), algorytm AES128_GCM nie zadziała i wyciekną kluczowe materiały.
- AES128_GCM_SIV jest prawie tak szybki jak AES128_GCM. Ma te same limity co AES128_GCM dotyczące liczby i rozmiaru wiadomości, ale gdy te limity zostaną przekroczone, powoduje mniej katastrofalne skutki: może tylko ujawnić, że 2 wiadomości są równe. Dzięki temu jest bezpieczniejsza niż AES128_GCM, ale w praktyce jest rzadziej używana. Aby używać tej funkcji w Javie, musisz zainstalować Conscrypt.
- XChaCha20Poly1305 ma znacznie większy limit liczby wiadomości i rozmiaru wiadomości niż AES128_GCM, ale gdy wystąpi błąd (bardzo rzadko), również wycieka materiał klucza. Nie korzysta z akceleracji sprzętowej, więc może być wolniejszy niż tryby AES w sytuacjach, gdy dostępna jest akceleracja sprzętowa.
Gwarancje bezpieczeństwa
Implementacje AEAD zapewniają:
- Zabezpieczenia CCA2.
- Siła uwierzytelniania co najmniej 80-bitowa.
- Możliwość zaszyfrowania co najmniej 232 wiadomości o łącznej długości 2 50 bajtów. Żadna z ataków z maksymalnie 232 wybranymi tekstami jawnymi lub wybranymi tekstami zaszyfrowanymi nie ma prawdopodobieństwa powodzenia większego niż 2-32.