Мы рекомендуем примитив Streaming AEAD с типом ключа AES128_GCM_HKDF_1MB для большинства случаев использования шифрования файлов.
Примитив потокового шифрования с проверкой подлинности и связанными данными (Streaming AEAD) полезен для шифрования потоков данных в реальном времени или больших файлов, которые не помещаются в памяти. Подобно AEAD, он симметричен и использует один ключ как для шифрования, так и для дешифрования.
Следующие примеры помогут вам начать использовать примитив Streaming AEAD:
Идти
import ( "bytes" "fmt" "io" "log" "os" "path/filepath" "github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset" "github.com/tink-crypto/tink-go/v2/keyset" "github.com/tink-crypto/tink-go/v2/streamingaead" ) func Example() { // A keyset created with "tinkey create-keyset --key-template=AES256_CTR_HMAC_SHA256_1MB". Note // that this keyset has the secret key information in cleartext. jsonKeyset := `{ "primaryKeyId": 1720777699, "key": [{ "keyData": { "typeUrl": "type.googleapis.com/google.crypto.tink.AesCtrHmacStreamingKey", "keyMaterialType": "SYMMETRIC", "value": "Eg0IgCAQIBgDIgQIAxAgGiDtesd/4gCnQdTrh+AXodwpm2b6BFJkp043n+8mqx0YGw==" }, "outputPrefixType": "RAW", "keyId": 1720777699, "status": "ENABLED" }] }` // Create a keyset handle from the cleartext keyset in the previous // step. The keyset handle provides abstract access to the underlying keyset to // limit the exposure of accessing the raw key material. WARNING: In practice, // it is unlikely you will want to use an insecurecleartextkeyset, as it implies // that your key material is passed in cleartext, which is a security risk. // Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault. // See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets. keysetHandle, err := insecurecleartextkeyset.Read( keyset.NewJSONReader(bytes.NewBufferString(jsonKeyset))) if err != nil { log.Fatal(err) } // Retrieve the StreamingAEAD primitive we want to use from the keyset handle. primitive, err := streamingaead.New(keysetHandle) if err != nil { log.Fatal(err) } // Create a file with the plaintext. dir, err := os.MkdirTemp("", "streamingaead") if err != nil { log.Fatal(err) } defer os.RemoveAll(dir) plaintextPath := filepath.Join(dir, "plaintext") if err := os.WriteFile(plaintextPath, []byte("this data needs to be encrypted"), 0666); err != nil { log.Fatal(err) } plaintextFile, err := os.Open(plaintextPath) if err != nil { log.Fatal(err) } // associatedData defines the context of the encryption. Here, we include the path of the // plaintext file. associatedData := []byte("associatedData for " + plaintextPath) // Encrypt the plaintext file and write the output to the ciphertext file. In this case the // primary key of the keyset will be used (which is also the only key in this example). ciphertextPath := filepath.Join(dir, "ciphertext") ciphertextFile, err := os.Create(ciphertextPath) if err != nil { log.Fatal(err) } w, err := primitive.NewEncryptingWriter(ciphertextFile, associatedData) if err != nil { log.Fatal(err) } if _, err := io.Copy(w, plaintextFile); err != nil { log.Fatal(err) } if err := w.Close(); err != nil { log.Fatal(err) } if err := ciphertextFile.Close(); err != nil { log.Fatal(err) } if err := plaintextFile.Close(); err != nil { log.Fatal(err) } // Decrypt the ciphertext file and write the output to the decrypted file. The // decryption finds the correct key in the keyset and decrypts the ciphertext. // If no key is found or decryption fails, it returns an error. ciphertextFile, err = os.Open(ciphertextPath) if err != nil { log.Fatal(err) } decryptedPath := filepath.Join(dir, "decrypted") decryptedFile, err := os.Create(decryptedPath) if err != nil { log.Fatal(err) } r, err := primitive.NewDecryptingReader(ciphertextFile, associatedData) if err != nil { log.Fatal(err) } if _, err := io.Copy(decryptedFile, r); err != nil { log.Fatal(err) } if err := decryptedFile.Close(); err != nil { log.Fatal(err) } if err := ciphertextFile.Close(); err != nil { log.Fatal(err) } // Print the content of the decrypted file. b, err := os.ReadFile(decryptedPath) if err != nil { log.Fatal(err) } fmt.Println(string(b)) // Output: this data needs to be encrypted }
Ява
package streamingaead; import static java.nio.charset.StandardCharsets.UTF_8; import com.google.crypto.tink.InsecureSecretKeyAccess; import com.google.crypto.tink.KeysetHandle; import com.google.crypto.tink.RegistryConfiguration; import com.google.crypto.tink.StreamingAead; import com.google.crypto.tink.TinkJsonProtoKeysetFormat; import com.google.crypto.tink.streamingaead.StreamingAeadConfig; import java.io.IOException; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; import java.nio.channels.ReadableByteChannel; import java.nio.channels.WritableByteChannel; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.nio.file.StandardOpenOption; import java.security.GeneralSecurityException; /** * A command-line utility for encrypting files with Streaming AEAD. * * <p>It loads cleartext keys from disk - this is not recommended! * * <p>It requires the following arguments: * * <ul> * <li>mode: Can be "encrypt" or "decrypt" to encrypt/decrypt the input to the output. * <li>key-file: Read the key material from this file. * <li>input-file: Read the input from this file. * <li>output-file: Write the result to this file. * <li>[optional] associated-data: Associated data used for the encryption or decryption. */ public final class StreamingAeadExample { private static final String MODE_ENCRYPT = "encrypt"; private static final String MODE_DECRYPT = "decrypt"; private static final int BLOCK_SIZE_IN_BYTES = 8 * 1024; public static void main(String[] args) throws Exception { if (args.length != 4 && args.length != 5) { System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length); System.err.println( "Usage: java StreamingAeadExample encrypt/decrypt key-file input-file output-file" + " [associated-data]"); System.exit(1); } String mode = args[0]; Path keyFile = Paths.get(args[1]); Path inputFile = Paths.get(args[2]); Path outputFile = Paths.get(args[3]); byte[] associatedData = new byte[0]; if (args.length == 5) { associatedData = args[4].getBytes(UTF_8); } // Initialize Tink: register all Streaming AEAD key types with the Tink runtime StreamingAeadConfig.register(); // Read the keyset into a KeysetHandle KeysetHandle handle = TinkJsonProtoKeysetFormat.parseKeyset( new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get()); // Get the primitive StreamingAead streamingAead = handle.getPrimitive(RegistryConfiguration.get(), StreamingAead.class); // Use the primitive to encrypt/decrypt files if (mode.equals(MODE_ENCRYPT)) { encryptFile(streamingAead, inputFile, outputFile, associatedData); } else if (mode.equals(MODE_DECRYPT)) { decryptFile(streamingAead, inputFile, outputFile, associatedData); } else { System.err.println( "The first argument must be either " + MODE_ENCRYPT + " or " + MODE_DECRYPT + ", got: " + mode); System.exit(1); } } private static void encryptFile( StreamingAead streamingAead, Path inputFile, Path outputFile, byte[] associatedData) throws GeneralSecurityException, IOException { try (WritableByteChannel encryptingChannel = streamingAead.newEncryptingChannel( FileChannel.open(outputFile, StandardOpenOption.WRITE, StandardOpenOption.CREATE), associatedData); FileChannel inputChannel = FileChannel.open(inputFile, StandardOpenOption.READ)) { ByteBuffer byteBuffer = ByteBuffer.allocate(BLOCK_SIZE_IN_BYTES); while (true) { int read = inputChannel.read(byteBuffer); if (read <= 0) { return; } byteBuffer.flip(); while (byteBuffer.hasRemaining()) { encryptingChannel.write(byteBuffer); } byteBuffer.clear(); } } } private static void decryptFile( StreamingAead streamingAead, Path inputFile, Path outputFile, byte[] associatedData) throws GeneralSecurityException, IOException { try (ReadableByteChannel decryptingChannel = streamingAead.newDecryptingChannel( FileChannel.open(inputFile, StandardOpenOption.READ), associatedData); FileChannel outputChannel = FileChannel.open(outputFile, StandardOpenOption.WRITE, StandardOpenOption.CREATE)) { ByteBuffer byteBuffer = ByteBuffer.allocate(BLOCK_SIZE_IN_BYTES); while (true) { int read = decryptingChannel.read(byteBuffer); if (read <= 0) { return; } byteBuffer.flip(); while (byteBuffer.hasRemaining()) { outputChannel.write(byteBuffer); } byteBuffer.clear(); } } } private StreamingAeadExample() {} }
Питон
"""A command-line utility for using streaming AEAD for a file. It loads cleartext keys from disk - this is not recommended! It requires 4 arguments (and one optional one): mode: either 'encrypt' or 'decrypt' keyset_path: name of the file with the keyset to be used for encryption or decryption input_path: name of the file with the input data to be encrypted or decrypted output_path: name of the file to write the ciphertext respectively plaintext to [optional] associated_data: the associated data used for encryption/decryption provided as a string. """ from typing import BinaryIO from absl import app from absl import flags from absl import logging import tink from tink import secret_key_access from tink import streaming_aead FLAGS = flags.FLAGS BLOCK_SIZE = 1024 * 1024 # The CLI tool will read/write at most 1 MB at once. flags.DEFINE_enum('mode', None, ['encrypt', 'decrypt'], 'Selects if the file should be encrypted or decrypted.') flags.DEFINE_string('keyset_path', None, 'Path to the keyset used for encryption or decryption.') flags.DEFINE_string('input_path', None, 'Path to the input file.') flags.DEFINE_string('output_path', None, 'Path to the output file.') flags.DEFINE_string('associated_data', None, 'Associated data used for the encryption or decryption.') def read_as_blocks(file: BinaryIO): """Generator function to read from a file BLOCK_SIZE bytes. Args: file: The file object to read from. Yields: Returns up to BLOCK_SIZE bytes from the file. """ while True: data = file.read(BLOCK_SIZE) # If file was opened in rawIO, EOF is only reached when b'' is returned. # pylint: disable=g-explicit-bool-comparison if data == b'': break # pylint: enable=g-explicit-bool-comparison yield data def encrypt_file(input_file: BinaryIO, output_file: BinaryIO, associated_data: bytes, primitive: streaming_aead.StreamingAead): """Encrypts a file with the given streaming AEAD primitive. Args: input_file: File to read from. output_file: File to write to. associated_data: Associated data provided for the AEAD. primitive: The streaming AEAD primitive used for encryption. """ with primitive.new_encrypting_stream(output_file, associated_data) as enc_stream: for data_block in read_as_blocks(input_file): enc_stream.write(data_block) def decrypt_file(input_file: BinaryIO, output_file: BinaryIO, associated_data: bytes, primitive: streaming_aead.StreamingAead): """Decrypts a file with the given streaming AEAD primitive. This function will cause the program to exit with 1 if the decryption fails. Args: input_file: File to read from. output_file: File to write to. associated_data: Associated data provided for the AEAD. primitive: The streaming AEAD primitive used for decryption. """ try: with primitive.new_decrypting_stream(input_file, associated_data) as dec_stream: for data_block in read_as_blocks(dec_stream): output_file.write(data_block) except tink.TinkError as e: logging.exception('Error decrypting ciphertext: %s', e) exit(1) def main(argv): del argv associated_data = b'' if not FLAGS.associated_data else bytes( FLAGS.associated_data, 'utf-8') # Initialise Tink. try: streaming_aead.register() except tink.TinkError as e: logging.exception('Error initialising Tink: %s', e) return 1 # Read the keyset into a keyset_handle. with open(FLAGS.keyset_path, 'rt') as keyset_file: try: text = keyset_file.read() keyset_handle = tink.json_proto_keyset_format.parse( text, secret_key_access.TOKEN ) except tink.TinkError as e: logging.exception('Error reading key: %s', e) return 1 # Get the primitive. try: streaming_aead_primitive = keyset_handle.primitive( streaming_aead.StreamingAead) except tink.TinkError as e: logging.exception('Error creating streaming AEAD primitive from keyset: %s', e) return 1 # Encrypt or decrypt the file. with open(FLAGS.input_path, 'rb') as input_file: with open(FLAGS.output_path, 'wb') as output_file: if FLAGS.mode == 'encrypt': encrypt_file(input_file, output_file, associated_data, streaming_aead_primitive) elif FLAGS.mode == 'decrypt': decrypt_file(input_file, output_file, associated_data, streaming_aead_primitive) if __name__ == '__main__': flags.mark_flag_as_required('mode') flags.mark_flag_as_required('keyset_path') flags.mark_flag_as_required('input_path') flags.mark_flag_as_required('output_path') app.run(main)
Потоковое AEAD
Примитив Streaming AEAD обеспечивает шифрование с проверкой подлинности для потоковых данных. Это полезно, когда данные, подлежащие шифрованию, слишком велики, чтобы их можно было обработать за один шаг. Типичные случаи использования включают шифрование больших файлов или потоков данных в реальном времени.
Шифрование выполняется сегментами, которые привязаны к своему местоположению в зашифрованном тексте и не могут быть удалены или переупорядочены. Сегменты одного зашифрованного текста не могут быть вставлены в другой зашифрованный текст. Чтобы изменить существующий зашифрованный текст, весь поток данных должен быть повторно зашифрован. 1
Расшифровка выполняется быстро, поскольку одновременно расшифровывается и аутентифицируется только часть зашифрованного текста. Частичные открытые тексты можно получить без обработки всего зашифрованного текста.
Реализации потоковой передачи AEAD соответствуют определению AEAD и защищены по стандарту NoAE . Они обладают следующими свойствами:
- Секретность : об открытом тексте ничего не известно, кроме его длины.
- Подлинность : невозможно изменить зашифрованный открытый текст, лежащий в основе зашифрованного текста, не будучи обнаруженным.
- Симметричный : шифрование открытого текста и расшифровка зашифрованного текста выполняются одним и тем же ключом.
- Рандомизация : шифрование рандомизировано. Два сообщения с одинаковым открытым текстом дают разные зашифрованные тексты. Злоумышленники не могут знать, какой зашифрованный текст соответствует данному открытому тексту.
Связанные данные
Примитив Streaming AEAD можно использовать для привязки зашифрованного текста к конкретным связанным данным . Предположим, у вас есть база данных с полями user-id
и encrypted-medical-history
: в этом сценарии user-id
может использоваться в качестве связанных данных при шифровании encrypted-medical-history
. Это не позволяет злоумышленнику передать историю болезни от одного пользователя к другому.
Выберите тип ключа
Для большинства случаев мы рекомендуем AES128_GCM_HKDF_1MB . В целом:
- AES-GCM-HKDF
- AES128_GCM_HKDF_1MB (или AES256_GCM_HKDF_1MB) — более быстрый вариант. Он может зашифровать 264 файла размером до 264 байт каждый. Во время процесса шифрования и дешифрования потребляется ~1 МБ памяти.
- AES128_GCM_HKDF_4KB потребляет около 4 КБ памяти и является хорошим выбором, если в вашей системе мало памяти.
- AES-CTR HMAC
- AES128_CTR_HMAC_SHA256_1MB (или AES256_CTR_HMAC_SHA256_1MB) — более консервативный вариант.
Гарантии безопасности
Реализации потоковой передачи AEAD предлагают:
- Безопасность CCA2.
- Уровень аутентификации не менее 80 бит.
- Возможность шифрования не менее 2 64 сообщений 3 общей длиной 2 51 байт 2 . Никакая атака с использованием до 232 выбранных открытых текстов или выбранных зашифрованных текстов не имеет вероятности успеха, превышающей 2-32 .
Причиной этого ограничения является использование шифра AES-GCM. Шифрование другого сегмента открытого текста в том же месте было бы эквивалентно повторному использованию IV, что нарушает гарантии безопасности AES-GCM. Другая причина заключается в том, что это предотвращает атаки отката, когда злоумышленник может попытаться восстановить предыдущую версию файла без обнаружения. ↩
2 Поддерживается 32 сегмента, каждый из которых содержит
segment_size - tag_size
байтов открытого текста. Для сегментов размером 1 МБ общий размер открытого текста составляет 2 32 * (2 20 -16) ~= 2 51 байт. ↩Потоковая передача AEAD становится небезопасной, когда повторяется комбинация производного ключа (128-бит) и префикса nonce (независимое случайное 7-байтовое значение). У нас есть 184-битная устойчивость к коллизиям, что примерно соответствует 2 64 сообщениям, если мы хотим, чтобы вероятность успеха была меньше 2 -32 . ↩