データを交換したい

ハイブリッド暗号化プリミティブを DHKEM_X25519_HKDF_SHA256、HKDF_SHA256、AES_256_GCM キー 公開鍵暗号化のほとんどのユースケースで使用できます。

公開鍵の暗号化では、公開鍵と鍵の 2 つの鍵でデータを保護します。 非公開です。公開鍵は暗号化に使用され、秘密鍵が使用されます。 復号されます。この方法は、送信側がシークレットを保存できず、 公開鍵でデータを暗号化する必要があります。

次の例では、ハイブリッド暗号化プリミティブの使用を開始します。

C++

// A command-line utility for testing Tink Hybrid Encryption.
#include <iostream>
#include <memory>
#include <ostream>
#include <string>

#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "tink/config/global_registry.h"
#include "util/util.h"
#ifndef TINK_EXAMPLES_EXCLUDE_HPKE
#include "tink/hybrid/hpke_config.h"
#endif
#include "tink/hybrid/hybrid_config.h"
#include "tink/hybrid_decrypt.h"
#include "tink/hybrid_encrypt.h"
#include "tink/keyset_handle.h"
#include "tink/util/status.h"

ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format");
ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}");
ABSL_FLAG(std::string, input_filename, "", "Input file name");
ABSL_FLAG(std::string, output_filename, "", "Output file name");
ABSL_FLAG(std::string, context_info, "",
          "Context info for Hybrid Encryption/Decryption");

namespace {

using ::crypto::tink::HybridDecrypt;
using ::crypto::tink::HybridEncrypt;
using ::crypto::tink::KeysetHandle;
using ::crypto::tink::util::Status;
using ::crypto::tink::util::StatusOr;

constexpr absl::string_view kEncrypt = "encrypt";
constexpr absl::string_view kDecrypt = "decrypt";

void ValidateParams() {
  // ...
}

}  // namespace

namespace tink_cc_examples {

Status HybridCli(absl::string_view mode, const std::string& keyset_filename,
                 const std::string& input_filename,
                 const std::string& output_filename,
                 absl::string_view context_info) {
  Status result = crypto::tink::HybridConfig::Register();
  if (!result.ok()) return result;
#ifndef TINK_EXAMPLES_EXCLUDE_HPKE
  // HPKE isn't supported when using OpenSSL as a backend.
  result = crypto::tink::RegisterHpke();
  if (!result.ok()) return result;
#endif

  // Read the keyset from file.
  StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle =
      ReadJsonCleartextKeyset(keyset_filename);
  if (!keyset_handle.ok()) return keyset_handle.status();

  // Read the input.
  StatusOr<std::string> input_file_content = ReadFile(input_filename);
  if (!input_file_content.ok()) return input_file_content.status();

  // Compute the output.
  std::string output;
  if (mode == kEncrypt) {
    // Get the hybrid encryption primitive.
    StatusOr<std::unique_ptr<HybridEncrypt>> hybrid_encrypt_primitive =
        (*keyset_handle)
            ->GetPrimitive<crypto::tink::HybridEncrypt>(
                crypto::tink::ConfigGlobalRegistry());
    if (!hybrid_encrypt_primitive.ok()) {
      return hybrid_encrypt_primitive.status();
    }
    // Generate the ciphertext.
    StatusOr<std::string> encrypt_result =
        (*hybrid_encrypt_primitive)->Encrypt(*input_file_content, context_info);
    if (!encrypt_result.ok()) return encrypt_result.status();
    output = encrypt_result.value();
  } else {  // operation == kDecrypt.
    // Get the hybrid decryption primitive.
    StatusOr<std::unique_ptr<HybridDecrypt>> hybrid_decrypt_primitive =
        (*keyset_handle)
            ->GetPrimitive<crypto::tink::HybridDecrypt>(
                crypto::tink::ConfigGlobalRegistry());
    if (!hybrid_decrypt_primitive.ok()) {
      return hybrid_decrypt_primitive.status();
    }
    // Recover the plaintext.
    StatusOr<std::string> decrypt_result =
        (*hybrid_decrypt_primitive)->Decrypt(*input_file_content, context_info);
    if (!decrypt_result.ok()) return decrypt_result.status();
    output = decrypt_result.value();
  }

  // Write the output to the output file.
  return WriteToFile(output, output_filename);
}

}  // namespace tink_cc_examples

int main(int argc, char** argv) {
  absl::ParseCommandLine(argc, argv);

  ValidateParams();

  std::string mode = absl::GetFlag(FLAGS_mode);
  std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename);
  std::string input_filename = absl::GetFlag(FLAGS_input_filename);
  std::string output_filename = absl::GetFlag(FLAGS_output_filename);
  std::string context_info = absl::GetFlag(FLAGS_context_info);

  std::clog << "Using keyset from file " << keyset_filename << " to hybrid "
            << mode << " file " << input_filename << " with context info '"
            << context_info << "'." << '\n';
  std::clog << "The resulting output will be written to " << output_filename
            << '\n';

  CHECK_OK(tink_cc_examples::HybridCli(mode, keyset_filename, input_filename,
                                       output_filename, context_info));
  return 0;
}

Go


import (
	"bytes"
	"fmt"
	"log"

	"github.com/tink-crypto/tink-go/v2/hybrid"
	"github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset"
	"github.com/tink-crypto/tink-go/v2/keyset"
)

func Example() {
	// A private keyset created with
	// "tinkey create-keyset --key-template=DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM --out private_keyset.cfg".
	// Note that this keyset has the secret key information in cleartext.
	privateJSONKeyset := `{
		"key": [{
				"keyData": {
						"keyMaterialType":
								"ASYMMETRIC_PRIVATE",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.HpkePrivateKey",
						"value":
								"EioSBggBEAEYAhogVWQpmQoz74jcAp5WOD36KiBQ71MVCpn2iWfOzWLtKV4aINfn8qlMbyijNJcCzrafjsgJ493ZZGN256KTfKw0WN+p"
				},
				"keyId": 958452012,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 958452012
  }`

	// The corresponding public keyset created with
	// "tinkey create-public-keyset --in private_keyset.cfg".
	publicJSONKeyset := `{
		"key": [{
				"keyData": {
						"keyMaterialType":
								"ASYMMETRIC_PUBLIC",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.HpkePublicKey",
						"value":
								"EgYIARABGAIaIFVkKZkKM++I3AKeVjg9+iogUO9TFQqZ9olnzs1i7Sle"
				},
				"keyId": 958452012,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 958452012
  }`

	// Create a keyset handle from the keyset containing the public key. Because the
	// public keyset does not contain any secrets, we can use [keyset.ReadWithNoSecrets].
	publicKeysetHandle, err := keyset.ReadWithNoSecrets(
		keyset.NewJSONReader(bytes.NewBufferString(publicJSONKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the HybridEncrypt primitive from publicKeysetHandle.
	encPrimitive, err := hybrid.NewHybridEncrypt(publicKeysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	plaintext := []byte("message")
	encryptionContext := []byte("encryption context")
	ciphertext, err := encPrimitive.Encrypt(plaintext, encryptionContext)
	if err != nil {
		log.Fatal(err)
	}

	// Create a keyset handle from the cleartext private keyset in the previous
	// step. The keyset handle provides abstract access to the underlying keyset to
	// limit the access of the raw key material. WARNING: In practice,
	// it is unlikely you will want to use a insecurecleartextkeyset, as it implies
	// that your key material is passed in cleartext, which is a security risk.
	// Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault.
	// See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets.
	privateKeysetHandle, err := insecurecleartextkeyset.Read(
		keyset.NewJSONReader(bytes.NewBufferString(privateJSONKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the HybridDecrypt primitive from privateKeysetHandle.
	decPrimitive, err := hybrid.NewHybridDecrypt(privateKeysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	decrypted, err := decPrimitive.Decrypt(ciphertext, encryptionContext)
	if err != nil {
		log.Fatal(err)
	}

	fmt.Println(string(decrypted))
	// Output: message
}

Java

package hybrid;

import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.crypto.tink.HybridDecrypt;
import com.google.crypto.tink.HybridEncrypt;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.TinkJsonProtoKeysetFormat;
import com.google.crypto.tink.hybrid.HybridConfig;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * A command-line utility for hybrid encryption.
 *
 * <p>It loads cleartext keys from disk - this is not recommended!
 *
 * <p>It requires the following arguments:
 *
 * <ul>
 *   <li>mode: either 'encrypt' or 'decrypt'.
 *   <li>key-file: Read the key material from this file.
 *   <li>input-file: Read the input from this file.
 *   <li>output-file: Write the result to this file.
 *   <li>[optional] contex-info: Bind the encryption to this context info.
 */
public final class HybridExample {
  public static void main(String[] args) throws Exception {
    if (args.length != 4 && args.length != 5) {
      System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length);
      System.err.println(
          "Usage: java HybridExample encrypt/decrypt key-file input-file output-file context-info");
      System.exit(1);
    }

    String mode = args[0];
    if (!mode.equals("encrypt") && !mode.equals("decrypt")) {
      System.err.println("Incorrect mode. Please select encrypt or decrypt.");
      System.exit(1);
    }
    Path keyFile = Paths.get(args[1]);
    Path inputFile = Paths.get(args[2]);
    byte[] input = Files.readAllBytes(inputFile);
    Path outputFile = Paths.get(args[3]);
    byte[] contextInfo = new byte[0];
    if (args.length == 5) {
      contextInfo = args[4].getBytes(UTF_8);
    }

    // Register all hybrid encryption key types with the Tink runtime.
    HybridConfig.register();

    // Read the keyset into a KeysetHandle.
    KeysetHandle handle =
        TinkJsonProtoKeysetFormat.parseKeyset(
            new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get());

    if (mode.equals("encrypt")) {
      // Get the primitive.
      HybridEncrypt encryptor = handle.getPrimitive(HybridEncrypt.class);

      // Use the primitive to encrypt data.
      byte[] ciphertext = encryptor.encrypt(input, contextInfo);
      Files.write(outputFile, ciphertext);
    } else {
      HybridDecrypt decryptor = handle.getPrimitive(HybridDecrypt.class);

      // Use the primitive to decrypt data.
      byte[] plaintext = decryptor.decrypt(input, contextInfo);
      Files.write(outputFile, plaintext);
    }
  }

  private HybridExample() {}
}

Obj-C

ハウツー

Python

import tink
from tink import hybrid
from tink import secret_key_access


def example():
  """Encrypt and decrypt using hybrid encryption."""
  # Register the hybrid encryption key managers. This is needed to create
  # HybridEncrypt and HybridDecrypt primitives later.
  hybrid.register()

  # A private keyset created with
  # tinkey create-keyset \
  #   --key-template=DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM \
  #   --out private_keyset.cfg
  # Note that this keyset has the secret key information in cleartext.
  private_keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "ASYMMETRIC_PRIVATE",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.HpkePrivateKey",
              "value":
                  "EioSBggBEAEYAhogVWQpmQoz74jcAp5WOD36KiBQ71MVCpn2iWfOzWLtKV4aINfn8qlMbyijNJcCzrafjsgJ493ZZGN256KTfKw0WN+p"
          },
          "keyId": 958452012,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 958452012
  }"""

  # The corresponding public keyset created with
  # "tinkey create-public-keyset --in private_keyset.cfg"
  public_keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "ASYMMETRIC_PUBLIC",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.HpkePublicKey",
              "value":
                  "EgYIARABGAIaIFVkKZkKM++I3AKeVjg9+iogUO9TFQqZ9olnzs1i7Sle"          },
          "keyId": 958452012,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 958452012
  }"""

  # Create a keyset handle from the keyset containing the public key. Because
  # this keyset does not contain any secrets, we can use
  # `parse_without_secret`.
  public_keyset_handle = tink.json_proto_keyset_format.parse_without_secret(
      public_keyset
  )

  # Retrieve the HybridEncrypt primitive from the keyset handle.
  enc_primitive = public_keyset_handle.primitive(hybrid.HybridEncrypt)

  # Use enc_primitive to encrypt a message. In this case the primary key of the
  # keyset will be used (which is also the only key in this example).
  ciphertext = enc_primitive.encrypt(b'message', b'context_info')

  # Create a keyset handle from the private keyset. The keyset handle provides
  # abstract access to the underlying keyset to limit the exposure of accessing
  # the raw key material. WARNING: In practice, it is unlikely you will want to
  # use a tink.json_proto_keyset_format.parse, as it implies that your key
  # material is passed in cleartext which is a security risk.
  private_keyset_handle = tink.json_proto_keyset_format.parse(
      private_keyset, secret_key_access.TOKEN
  )

  # Retrieve the HybridDecrypt primitive from the private keyset handle.
  dec_primitive = private_keyset_handle.primitive(hybrid.HybridDecrypt)

  # Use dec_primitive to decrypt the message. Decrypt finds the correct key in
  # the keyset and decrypts the ciphertext. If no key is found or decryption
  # fails, it raises an error.
  decrypted = dec_primitive.decrypt(ciphertext, b'context_info')

ハイブリッド暗号化

ハイブリッド暗号化プリミティブは、効率的な対称暗号化と 暗号化と復号化も実現します。誰でも暗号化できる データを復号できますが、復号できるのは秘密鍵を持つユーザーのみですが、 分析できます

ハイブリッド暗号化の場合、送信者は新しい対称鍵を生成して、 平文を使用して暗号テキストを生成します。この対称鍵は、 受信者の公開鍵でカプセル化されています。ハイブリッド復号の場合、 対称鍵は受信者によってカプセル化され、鍵の復号に使用される 元の平文に復元します。Tink ハイブリッド暗号化ワイヤーをご覧ください。 形式をご覧ください。 暗号テキストと鍵カプセル化を送信します。

ハイブリッド暗号化には次の特性があります。

  • Secrecy: 暗号化された鍵に関する情報は、 平文(長さを除く)で暗号化されます。
  • 非対称性: 公開鍵を使用して暗号テキストを暗号化できます。 復号には秘密鍵が必要です
  • ランダム化: 暗号化はランダム化されます。同じメッセージと 同じ暗号テキストを生成できません。これにより攻撃者は 対応する暗号テキストを認識します。

Tink では、ハイブリッド暗号化は次のプリミティブのペアとして表されます。

  • HybridEncrypt(暗号化用)
  • HybridDecrypt - 復号

コンテキスト情報パラメータ

平文に加えて、ハイブリッド暗号化は追加のパラメータ、 context_info。通常はコンテキストから暗黙的に一般公開データですが、 生成された暗号テキストにバインドされる必要があります。つまり、この暗号テキストは コンテキスト情報の完全性を確認できますが、 秘密性や真正性を保証するものではありません。実際のコンテキスト情報は空でもかまいません または null になりますが、暗号テキストを正しく復号できるように、 同じコンテキスト情報値が復号化のために提供されなければなりません。

ハイブリッド暗号化の具体的な実装により、コンテキスト情報を 方法を使用できます。次に例を示します。

  • AEAD 対称暗号化の関連データ入力として context_info を使用する (RFC 5116 を参照)。
  • context_info を「CtxInfo」として使用するHKDF の入力(実装で キー導出関数としての HKDF(参照:RFC 5869)。

鍵のタイプを選択

DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM の使用をおすすめします。 鍵タイプを使用できます。この鍵タイプは、ハイブリッド公開鍵を実装する RFC 2960 で定義されている暗号化(HPKE)標準 9180。HPKE は、 鍵カプセル化メカニズム(KEM)、鍵導出関数(KDF)、 (AEAD)アルゴリズムによって暗号化されます。

DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM では、具体的に以下を採用しています。

  • KEM: HKDF-SHA-256 を使用して Curve25519 で Diffie–Hellman を実行し、 シークレット。
  • KDF: HKDF-SHA-256。送信者と受信者のコンテキストを導出します。
  • AEAD: HPKE に従って生成された 12 バイトのノンスを備えた AES-256-GCM あります。

サポートされているその他の HPKE 鍵タイプには次のものがありますが、これらに限定されません。

  • DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_128_GCM
  • DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_CHACHA20_POLY1305
  • DHKEM_P256_HKDF_SHA256_HKDF_SHA256_AES_128_GCM
  • DHKEM_P521_HKDF_SHA512_HKDF_SHA512_AES_256_GCM

詳しくは、RFC 9180 をご覧ください。 KEM、KDF、AEAD のアルゴリズムの選択に関する詳細をご覧ください。

現在は推奨されていませんが、Tink は次のような ECIES のバリエーションもサポートしています。 Victor Shoup の ISO 18033-2 標準。サポートされている一部の ECIES 鍵 タイプは次のとおりです。

  • ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM
  • ECIES_P256_COMPRESSED_HKDF_HMAC_SHA256_AES128_GCM
  • ECIES_P256_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256
  • ECIES_P256_COMPRESSED_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256

最小限のプロパティ

  • 平文とコンテキスト情報の任意の長さ(範囲内) 0..232 バイト)
  • 適応型選択暗号テキスト攻撃に対する保護
  • 楕円曲線ベースのスキーム向けの 128 ビット セキュリティ