Zarządzaj kluczami

Tink oferuje rozwiązania pozwalające uniknąć niewłaściwego zarządzania kluczami, które jest poważnym źródłem ryzyka.

Przegląd

Po wybraniu podstawowego i typu klucza odpowiedniego do Twojego przypadku użycia (w poprzedniej sekcji Chcę...) zarządzaj kluczami za pomocą wybranego zewnętrznego systemu zarządzania kluczami (KMS):

  1. Utwórz klucz szyfrowania klucza (KEK) w KMS, aby chronić swoje klucze.

  2. Pobierz z KMS identyfikator URI klucza oraz dane logowania klucza, aby przekazać je do Tink.

  3. Użyj interfejsów API Tink lub Tinkey, aby wygenerować zaszyfrowany zestaw kluczy. Po zaszyfrowaniu kluczy możesz przechowywać je, gdzie chcesz.

  4. Wykonaj rotację kluczy, aby uniknąć ich wielokrotnego użycia i przywrócić odzyskanie klucza.

Krok 1. Utwórz klucz KEK w zewnętrznym systemie KMS

Utwórz klucz szyfrowania klucza (KEK) w zewnętrznym systemie KMS. KEK chroni klucze, szyfrując je, co zapewnia dodatkową warstwę zabezpieczeń.

Aby utworzyć klucz KEK, zapoznaj się z dokumentacją na temat KMS:

Krok 2. Uzyskaj identyfikator URI klucza i dane logowania

Z KMS możesz pobrać zarówno identyfikator URI klucza, jak i dane logowania do klucza.

Pobieranie identyfikatora URI klucza

Do obsługi kluczy KMS wymagany jest identyfikator URI (Uniform Resource Identifier).

Aby utworzyć ten identyfikator URI, użyj unikalnego identyfikatora przypisanego do klucza przez KMS podczas jego tworzenia. Dodaj odpowiedni prefiks KMS i postępuj zgodnie z formatem obsługiwanych identyfikatorów URI kluczy, jak opisano w tej tabeli:

KMS Prefiks identyfikatora KMS Format identyfikatora URI klucza
AWS KMS aws-kms:// aws-kms://arn:aws:kms:[region]:[account-id]:key/[key-id]
GCP KMS gcp-kms:// gcp-kms://projects/*/locations/*/keyRings/*/cryptoKeys/*
Skarbiec HashiCorp hcvault:// hcvault://[key-id]

Uzyskiwanie danych logowania do klucza

Przygotuj niezbędne dane logowania, aby Tink mógł uwierzytelnić się w zewnętrznym module KMS.

Dokładna postać danych logowania jest specyficzna dla KMS:

Jeśli nie podasz danych logowania, Tink spróbuje wczytać domyślne dane logowania. Więcej informacji znajdziesz w dokumentacji KMS:

Krok 3. Utwórz i zapisz zaszyfrowany zestaw kluczy

Użyj interfejsów API Tink (dla Google Cloud KMS, AWS KMS lub HashiCorp Vault) albo z Tinkey, aby wygenerować zbiór kluczy, zaszyfrować go za pomocą zewnętrznego narzędzia KMS i zapisać go w dowolnym miejscu.

Tinkey

tinkey create-keyset --key-template AES128_GCM \
  --out-format json --out encrypted_aead_keyset.json \
  --master-key-uri gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar \
  --credential gcp_credentials.json

Java

W tym przykładzie potrzebujesz rozszerzenia Google Cloud KMS tink-java-gcpkms.

package encryptedkeyset;

import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.crypto.tink.Aead;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.TinkJsonProtoKeysetFormat;
import com.google.crypto.tink.aead.AeadConfig;
import com.google.crypto.tink.aead.PredefinedAeadParameters;
import com.google.crypto.tink.integration.gcpkms.GcpKmsClient;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * A command-line utility for working with encrypted keysets.
 *
 * <p>It requires the following arguments:
 *
 * <ul>
 *   <li>mode: Can be "generate", "encrypt" or "decrypt". If mode is "generate", it will generate a
 *       keyset, encrypt it and store it in the key-file argument. If mode is "encrypt" or
 *       "decrypt", it will read and decrypt an keyset from the key-file argument, and use it to
 *       encrypt or decrypt the input-file argument.
 *   <li>kek-uri: Use this Cloud KMS' key as the key-encrypting-key for envelope encryption.
 *   <li>gcp-credential-file: Use this JSON credential file to connect to Cloud KMS.
 *   <li>input-file: If mode is "encrypt" or "decrypt", read the input from this file.
 *   <li>output-file: If mode is "encrypt" or "decrypt", write the result to this file.
 */
public final class EncryptedKeysetExample {
  private static final String MODE_ENCRYPT = "encrypt";
  private static final String MODE_DECRYPT = "decrypt";
  private static final String MODE_GENERATE = "generate";
  private static final byte[] EMPTY_ASSOCIATED_DATA = new byte[0];

  public static void main(String[] args) throws Exception {
    if (args.length != 4 && args.length != 6) {
      System.err.printf("Expected 4 or 6 parameters, got %d\n", args.length);
      System.err.println(
          "Usage: java EncryptedKeysetExample generate/encrypt/decrypt key-file kek-uri"
              + " gcp-credential-file input-file output-file");
      System.exit(1);
    }
    String mode = args[0];
    if (!mode.equals(MODE_ENCRYPT) && !mode.equals(MODE_DECRYPT) && !mode.equals(MODE_GENERATE)) {
      System.err.print("The first argument should be either encrypt, decrypt or generate");
      System.exit(1);
    }
    Path keyFile = Paths.get(args[1]);
    String kekUri = args[2];
    String gcpCredentialFilename = args[3];

    // Initialise Tink: register all AEAD key types with the Tink runtime
    AeadConfig.register();

    // From the key-encryption key (KEK) URI, create a remote AEAD primitive for encrypting Tink
    // keysets.
    Aead kekAead = new GcpKmsClient().withCredentials(gcpCredentialFilename).getAead(kekUri);

    if (mode.equals(MODE_GENERATE)) {
      KeysetHandle handle = KeysetHandle.generateNew(PredefinedAeadParameters.AES128_GCM);

      String serializedEncryptedKeyset =
          TinkJsonProtoKeysetFormat.serializeEncryptedKeyset(
              handle, kekAead, EMPTY_ASSOCIATED_DATA);
      Files.write(keyFile, serializedEncryptedKeyset.getBytes(UTF_8));
      return;
    }

    // Use the primitive to encrypt/decrypt files

    // Read the encrypted keyset
    KeysetHandle handle =
        TinkJsonProtoKeysetFormat.parseEncryptedKeyset(
            new String(Files.readAllBytes(keyFile), UTF_8), kekAead, EMPTY_ASSOCIATED_DATA);

    // Get the primitive
    Aead aead = handle.getPrimitive(Aead.class);

    Path inputFile = Paths.get(args[4]);
    Path outputFile = Paths.get(args[5]);

    if (mode.equals(MODE_ENCRYPT)) {
      byte[] plaintext = Files.readAllBytes(inputFile);
      byte[] ciphertext = aead.encrypt(plaintext, EMPTY_ASSOCIATED_DATA);
      Files.write(outputFile, ciphertext);
    } else if (mode.equals(MODE_DECRYPT)) {
      byte[] ciphertext = Files.readAllBytes(inputFile);
      byte[] plaintext = aead.decrypt(ciphertext, EMPTY_ASSOCIATED_DATA);
      Files.write(outputFile, plaintext);
    }
  }

  private EncryptedKeysetExample() {}
}

Przeczytaj


import (
	"bytes"
	"fmt"
	"log"

	"github.com/tink-crypto/tink-go/v2/aead"
	"github.com/tink-crypto/tink-go/v2/keyset"
	"github.com/tink-crypto/tink-go/v2/testing/fakekms"
)

// The fake KMS should only be used in tests. It is not secure.
const keyURI = "fake-kms://CM2b3_MDElQKSAowdHlwZS5nb29nbGVhcGlzLmNvbS9nb29nbGUuY3J5cHRvLnRpbmsuQWVzR2NtS2V5EhIaEIK75t5L-adlUwVhWvRuWUwYARABGM2b3_MDIAE"

func Example_encryptedKeyset() {
	// Get a KEK (key encryption key) AEAD. This is usually a remote AEAD to a KMS. In this example,
	// we use a fake KMS to avoid making RPCs.
	client, err := fakekms.NewClient(keyURI)
	if err != nil {
		log.Fatal(err)
	}
	kekAEAD, err := client.GetAEAD(keyURI)
	if err != nil {
		log.Fatal(err)
	}

	// Generate a new keyset handle for the primitive we want to use.
	newHandle, err := keyset.NewHandle(aead.AES256GCMKeyTemplate())
	if err != nil {
		log.Fatal(err)
	}

	// Choose some associated data. This is the context in which the keyset will be used.
	keysetAssociatedData := []byte("keyset encryption example")

	// Encrypt the keyset with the KEK AEAD and the associated data.
	buf := new(bytes.Buffer)
	writer := keyset.NewBinaryWriter(buf)
	err = newHandle.WriteWithAssociatedData(writer, kekAEAD, keysetAssociatedData)
	if err != nil {
		log.Fatal(err)
	}
	encryptedKeyset := buf.Bytes()

	// The encrypted keyset can now be stored.

	// To use the primitive, we first need to decrypt the keyset. We use the same
	// KEK AEAD and the same associated data that we used to encrypt it.
	reader := keyset.NewBinaryReader(bytes.NewReader(encryptedKeyset))
	handle, err := keyset.ReadWithAssociatedData(reader, kekAEAD, keysetAssociatedData)
	if err != nil {
		log.Fatal(err)
	}

	// Get the primitive.
	primitive, err := aead.New(handle)
	if err != nil {
		log.Fatal(err)
	}

	// Use the primitive.
	plaintext := []byte("message")
	associatedData := []byte("example encryption")
	ciphertext, err := primitive.Encrypt(plaintext, associatedData)
	if err != nil {
		log.Fatal(err)
	}
	decrypted, err := primitive.Decrypt(ciphertext, associatedData)
	if err != nil {
		log.Fatal(err)
	}
	fmt.Println(string(decrypted))
	// Output: message
}

Python

"""A command-line utility for generating, encrypting and storing keysets."""

from absl import app
from absl import flags
from absl import logging

import tink
from tink import aead
from tink.integration import gcpkms


FLAGS = flags.FLAGS

flags.DEFINE_enum('mode', None, ['generate', 'encrypt', 'decrypt'],
                  'The operation to perform.')
flags.DEFINE_string('keyset_path', None,
                    'Path to the keyset used for encryption.')
flags.DEFINE_string('kek_uri', None,
                    'The Cloud KMS URI of the key encryption key.')
flags.DEFINE_string('gcp_credential_path', None,
                    'Path to the GCP credentials JSON file.')
flags.DEFINE_string('input_path', None, 'Path to the input file.')
flags.DEFINE_string('output_path', None, 'Path to the output file.')
flags.DEFINE_string('associated_data', None,
                    'Optional associated data to use with the '
                    'encryption operation.')


def main(argv):
  del argv  # Unused.

  associated_data = b'' if not FLAGS.associated_data else bytes(
      FLAGS.associated_data, 'utf-8')

  # Initialise Tink
  aead.register()

  try:
    # Read the GCP credentials and setup client
    client = gcpkms.GcpKmsClient(FLAGS.kek_uri, FLAGS.gcp_credential_path)
  except tink.TinkError as e:
    logging.exception('Error creating GCP KMS client: %s', e)
    return 1

  # Create envelope AEAD primitive using AES256 GCM for encrypting the data
  try:
    remote_aead = client.get_aead(FLAGS.kek_uri)
  except tink.TinkError as e:
    logging.exception('Error creating primitive: %s', e)
    return 1

  if FLAGS.mode == 'generate':
    # Generate a new keyset
    try:
      key_template = aead.aead_key_templates.AES128_GCM
      keyset_handle = tink.new_keyset_handle(key_template)
    except tink.TinkError as e:
      logging.exception('Error creating primitive: %s', e)
      return 1

    # Encrypt the keyset_handle with the remote key-encryption key (KEK)
    with open(FLAGS.keyset_path, 'wt') as keyset_file:
      try:
        keyset_encryption_associated_data = 'encrypted keyset example'
        serialized_encrypted_keyset = (
            tink.json_proto_keyset_format.serialize_encrypted(
                keyset_handle, remote_aead, keyset_encryption_associated_data
            )
        )
        keyset_file.write(serialized_encrypted_keyset)
      except tink.TinkError as e:
        logging.exception('Error writing key: %s', e)
        return 1
    return 0

  # Use the keyset to encrypt/decrypt data

  # Read the encrypted keyset into a keyset_handle
  with open(FLAGS.keyset_path, 'rt') as keyset_file:
    try:
      serialized_encrypted_keyset = keyset_file.read()
      keyset_encryption_associated_data = 'encrypted keyset example'
      keyset_handle = tink.json_proto_keyset_format.parse_encrypted(
          serialized_encrypted_keyset,
          remote_aead,
          keyset_encryption_associated_data,
      )
    except tink.TinkError as e:
      logging.exception('Error reading key: %s', e)
      return 1

  # Get the primitive
  try:
    cipher = keyset_handle.primitive(aead.Aead)
  except tink.TinkError as e:
    logging.exception('Error creating primitive: %s', e)
    return 1

  with open(FLAGS.input_path, 'rb') as input_file:
    input_data = input_file.read()
    if FLAGS.mode == 'decrypt':
      output_data = cipher.decrypt(input_data, associated_data)
    elif FLAGS.mode == 'encrypt':
      output_data = cipher.encrypt(input_data, associated_data)
    else:
      logging.error(
          'Unsupported mode %s. Please choose "encrypt" or "decrypt".',
          FLAGS.mode,
      )
      return 1

    with open(FLAGS.output_path, 'wb') as output_file:
      output_file.write(output_data)


if __name__ == '__main__':
  flags.mark_flags_as_required([
      'mode', 'keyset_path', 'kek_uri', 'gcp_credential_path'])
  app.run(main)

Krok 4. Wykonaj rotację kluczy

Aby zapewnić bezpieczeństwo systemu, musisz wykonywać rotację kluczy.

  1. Włącz automatyczną rotację kluczy w KMS.
  2. Określ odpowiednią częstotliwość rotacji kluczy. Zależy to od stopnia poufności Twoich danych, liczby wiadomości do zaszyfrowania i tego, czy musisz koordynować rotację z partnerami zewnętrznymi.

    • Do szyfrowania symetrycznego użyj kluczy z od 30 do 90 dni.
    • W przypadku szyfrowania asymetrycznego częstotliwość rotacji może być mniejsza, ale tylko wtedy, gdy możesz bezpiecznie unieważnić klucze.

Więcej informacji o rotacji kluczy znajdziesz w dokumentacji KMS: