대부분의 사용 사례에는 HMAC_SHA256 키 유형이 있는 메시지 인증 코드 (MAC) 원시를 사용하는 것이 좋습니다.
아무도 데이터를 조작할 수 없도록 하려면 메시지 인증 코드 (MAC) 원시 형식을 사용하는 것이 좋습니다. 단일 키를 사용하여 메시지 인증 코드를 생성하고 확인합니다. MAC는 데이터를 암호화하지 않습니다. 대부분의 경우 암호화 및 MAC를 포함하는 AEAD로 데이터를 보호하는 것이 MAC만 사용하는 것보다 좋습니다.
다음 예를 통해 MAC 원시를 사용해 보세요.
C++
// A command-line utility for showcasing using the Tink MAC primitive. #include <cstdlib> #include <fstream> #include <iostream> #include <memory> #include <ostream> #include <sstream> #include <string> #include <utility> #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "tink/config/global_registry.h" #include "util/util.h" #include "tink/keyset_handle.h" #include "tink/mac.h" #include "tink/mac/mac_config.h" #include "tink/util/status.h" ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format"); ABSL_FLAG(std::string, mode, "", "Mode of operation {compute|verify}"); ABSL_FLAG(std::string, data_filename, "", "Data file name"); ABSL_FLAG(std::string, tag_filename, "", "Authentication tag file name"); namespace { using ::crypto::tink::KeysetHandle; using ::crypto::tink::Mac; using ::crypto::tink::MacConfig; using ::crypto::tink::util::Status; using ::crypto::tink::util::StatusOr; constexpr absl::string_view kCompute = "compute"; constexpr absl::string_view kVerify = "verify"; void ValidateParams() { // ... } } // namespace namespace tink_cc_examples { // MAC example CLI implementation. Status MacCli(absl::string_view mode, const std::string keyset_filename, const std::string& data_filename, const std::string& tag_filename) { Status result = MacConfig::Register(); if (!result.ok()) return result; // Read the keyset from file. StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle = ReadJsonCleartextKeyset(keyset_filename); if (!keyset_handle.ok()) return keyset_handle.status(); // Get the primitive. StatusOr<std::unique_ptr<Mac>> mac_primitive = (*keyset_handle) ->GetPrimitive<crypto::tink::Mac>( crypto::tink::ConfigGlobalRegistry()); if (!mac_primitive.ok()) return mac_primitive.status(); // Read the input. StatusOr<std::string> data_file_content = ReadFile(data_filename); if (!data_file_content.ok()) return data_file_content.status(); std::string output; if (mode == kCompute) { // Compute authentication tag. StatusOr<std::string> compute_result = (*mac_primitive)->ComputeMac(*data_file_content); if (!compute_result.ok()) return compute_result.status(); // Write out the authentication tag to tag file. return WriteToFile(*compute_result, tag_filename); } else { // operation == kVerify. // Read the authentication tag from tag file. StatusOr<std::string> tag_result = ReadFile(tag_filename); if (!tag_result.ok()) { std::cerr << tag_result.status().message() << '\n'; exit(1); } // Verify authentication tag. Status verify_result = (*mac_primitive)->VerifyMac(*tag_result, *data_file_content); if (verify_result.ok()) std::clog << "Verification succeeded!" << '\n'; return verify_result; } } } // namespace tink_cc_examples int main(int argc, char** argv) { absl::ParseCommandLine(argc, argv); ValidateParams(); std::string mode = absl::GetFlag(FLAGS_mode); std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename); std::string data_filename = absl::GetFlag(FLAGS_data_filename); std::string tag_filename = absl::GetFlag(FLAGS_tag_filename); std::clog << "Using keyset from file '" << keyset_filename << "' to " << mode << " authentication tag from file '" << tag_filename << "' for data file '" << data_filename << "'." << '\n'; std::clog << "The tag will be " << ((mode == kCompute) ? "written to" : "read from") << " file '" << tag_filename << "'." << '\n'; CHECK_OK(tink_cc_examples::MacCli(mode, keyset_filename, data_filename, tag_filename)); return 0; }
Go
import ( "bytes" "fmt" "log" "github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset" "github.com/tink-crypto/tink-go/v2/keyset" "github.com/tink-crypto/tink-go/v2/mac" ) func Example() { // A keyset created with "tinkey create-keyset --key-template=HMAC_SHA256_128BITTAG". // Note that this keyset has the secret key information in cleartext. jsonKeyset := `{ "key": [{ "keyData": { "keyMaterialType": "SYMMETRIC", "typeUrl": "type.googleapis.com/google.crypto.tink.HmacKey", "value": "EgQIAxAQGiA0LQjovcydWhVQV3k8W9ZSRkd7Ei4Y/TRWApE8guwV4Q==" }, "keyId": 1892702217, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 1892702217 }` // Create a keyset handle from the cleartext keyset in the previous // step. The keyset handle provides abstract access to the underlying keyset to // limit the exposure of accessing the raw key material. WARNING: In practice, // it is unlikely you will want to use a insecurecleartextkeyset, as it implies // that your key material is passed in cleartext, which is a security risk. // Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault. // See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets. keysetHandle, err := insecurecleartextkeyset.Read( keyset.NewJSONReader(bytes.NewBufferString(jsonKeyset))) if err != nil { log.Fatal(err) } // Retrieve the MAC primitive we want to use from the keyset handle. primitive, err := mac.New(keysetHandle) if err != nil { log.Fatal(err) } // Use the primitive to create a MAC tag for some data. In this case the primary // key of the keyset will be used (which is also the only key in this example). data := []byte("data") tag, err := primitive.ComputeMAC(data) if err != nil { log.Fatal(err) } // Use the primitive to verify the tag. VerifyMAC finds the correct key in // the keyset. If no key is found or verification fails, it returns an error. err = primitive.VerifyMAC(tag, data) if err != nil { log.Fatal(err) } fmt.Printf("tag is valid") // Output: tag is valid }
자바
package mac; import static java.nio.charset.StandardCharsets.UTF_8; import com.google.crypto.tink.InsecureSecretKeyAccess; import com.google.crypto.tink.KeysetHandle; import com.google.crypto.tink.Mac; import com.google.crypto.tink.RegistryConfiguration; import com.google.crypto.tink.TinkJsonProtoKeysetFormat; import com.google.crypto.tink.mac.MacConfig; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; /** * A command-line utility for checking file integrity with a Message Authentication Code (MAC). * * <p>It loads cleartext keys from disk - this is not recommended! * * <p>It requires the following arguments: * * <ul> * <li>mode: either 'compute' or 'verify'. * <li>key-file: Read the key material from this file. * <li>input-file: Read the input from this file. * <li>mac-file: name of the file containing a hexadecimal MAC of the input data. */ public final class MacExample { public static void main(String[] args) throws Exception { if (args.length != 4) { System.err.printf("Expected 4 parameters, got %d\n", args.length); System.err.println("Usage: java MacExample compute/verify key-file input-file mac-file"); System.exit(1); } String mode = args[0]; if (!mode.equals("compute") && !mode.equals("verify")) { System.err.println("Incorrect mode. Please select compute or verify."); System.exit(1); } Path keyFile = Paths.get(args[1]); byte[] msg = Files.readAllBytes(Paths.get(args[2])); Path macFile = Paths.get(args[3]); // Register all MAC key types with the Tink runtime. MacConfig.register(); // Read the keyset into a KeysetHandle. KeysetHandle handle = TinkJsonProtoKeysetFormat.parseKeyset( new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get()); // Get the primitive. Mac macPrimitive = handle.getPrimitive(RegistryConfiguration.get(), Mac.class); if (mode.equals("compute")) { byte[] macTag = macPrimitive.computeMac(msg); Files.write(macFile, macTag); } else { byte[] macTag = Files.readAllBytes(macFile); // This will throw a GeneralSecurityException if verification fails. macPrimitive.verifyMac(macTag, msg); } } private MacExample() {} }
Python
import tink from tink import mac from tink import secret_key_access def example(): """Compute and verify MAC tags.""" # Register the MAC key managers. This is needed to create a Mac primitive # later. mac.register() # Created with "tinkey create-keyset --key-template=HMAC_SHA256_128BITTAG". # Note that this keyset has the secret key information in cleartext. keyset = r"""{ "key": [{ "keyData": { "keyMaterialType": "SYMMETRIC", "typeUrl": "type.googleapis.com/google.crypto.tink.HmacKey", "value": "EgQIAxAQGiA0LQjovcydWhVQV3k8W9ZSRkd7Ei4Y/TRWApE8guwV4Q==" }, "keyId": 1892702217, "outputPrefixType": "TINK", "status": "ENABLED" }], "primaryKeyId": 1892702217 }""" # Create a keyset handle from the cleartext keyset in the previous # step. The keyset handle provides abstract access to the underlying keyset to # limit access of the raw key material. WARNING: In practice, it is unlikely # you will want to use tink.json_proto_keyset_format.parse, as it implies that # your key material is passed in cleartext, which is a security risk. keyset_handle = tink.json_proto_keyset_format.parse( keyset, secret_key_access.TOKEN ) # Retrieve the Mac primitive we want to use from the keyset handle. primitive = keyset_handle.primitive(mac.Mac) # Use the primitive to compute the MAC for a message. In this case the primary # key of the keyset will be used (which is also the only key in this example). data = b'data' tag = primitive.compute_mac(data) # Use the primitive to verify the MAC for the message. Verify finds the # correct key in the keyset and verifies the MAC. If no key is found or # verification fails, it raises an error. primitive.verify_mac(tag, data)
메시지 인증 코드 (MAC)
MAC 원시 함수를 사용하면 데이터가 조작되지 않았는지 확인할 수 있습니다. 발신자가 수신자와 대칭 키를 공유하면 특정 메시지의 인증 태그를 계산할 수 있습니다. 이를 통해 수신자는 메시지가 예상 발신자가 보낸 메시지이고 수정되지 않았는지 확인할 수 있습니다.
MAC에는 다음과 같은 속성이 있습니다.
- 진위성: 키를 알고 있어야만 검증 가능한 MAC 태그를 만들 수 있습니다.
- Symmetric: 태그를 계산하고 확인하려면 동일한 키가 필요합니다.
MAC은 알고리즘에 따라 결정론적일 수도 있고 무작위일 수도 있습니다. Tink는 현재 비결정론적 MAC 알고리즘을 구현하지 않습니다. MAC은 메시지 인증에만 사용해야 하며, 가상 무작위 바이트 생성과 같은 다른 목적으로는 사용해서는 안 됩니다 (이 경우 PRF 참고).
대신 비대칭 원시 요소가 필요한 경우 디지털 서명을 참고하세요.
키 유형 선택
대부분의 경우 HMAC_SHA256을 사용하는 것이 좋지만 다른 옵션도 있습니다.
일반적으로 다음이 적용됩니다.
- HMAC_SHA512는 메시지 크기와 사용하는 하드웨어의 세부사항에 따라 더 빠를 수도 있고 더 느릴 수도 있습니다.
- HMAC_SHA512는 거의 무제한의 메시지에 사용할 수 있는 가장 보수적인 모드입니다.
AES256_CMAC은 AES-NI 하드웨어 가속을 지원하는 시스템에서 가장 빠릅니다.
최소 보안 보장
- 인증 강도 80비트 이상
- 선택된 일반 텍스트 공격에서 실존 위조에 대해 보호
- 키 복구 공격에 대한 최소 128비트 보안 및 다중 사용자 시나리오 (공격자가 특정 키가 아닌 최대 232개의 키 세트 중 하나를 타겟팅하는 경우)